Lipid metabolism of rainbow trout reared on diets with different ratios of polyunsaturated fatty acids.
https://doi.org/10.36038/2307-3497-2025-200-117-130
EDN: SLWVRW
Abstract
Objective: to evaluate the ability of salmonids to both keep a high growth rate and survival rate and synthesize long-chain polyunsaturated fatty acids from their precursors when fish oil is partially or fully replaced with vegetable oils in rainbow trout diets.
Materials and methods: The experiment was carried out for 150 days on juvenile rainbow trout (average initial weight 91 g) reared in a recirculating aquaculture system. Compound feeds with a ratio of linoleic and alphalinolenic acids from 1:1 to 1:3 and a total content of eicosapentaenoic and docosahexaenoic acids from 0.3 to 1.2 g/100 g of feed have been developed and tested. The composition of fatty acids of total lipids of feed and muscle tissue of trout was analyzed on a Crystal 5000.2 chromatograph. Statistical data processing was carried out using singlefactor analysis of variance by the ANOVA method.
Results: Partial or complete substitution of fish oil with rapeseed and linseed oils resulted in high fish farming indicators and ensured the biosynthesis of EPA and DHA from plantderived precursors. The deficiency of longchain polyunsaturated fatty acids in the diets (total content not exceeding 0.3 g per 100 g) with a sufficient level (more than 5 g / 100 g of feed) of alphalinolenic acid could initiate the mechanism of PUFA biosynthesis in trout muscle. The use of diet with 1.2g of long-chain PUFA per 100 g of feed for 120 days stimulated an additional 17% increase in trout growth rate compared to diets including only fish oil.
Novelty and practical significance: These findings suggest the possibility of substituting fish oil in trout diets with rapeseed and linseed oils without compromising performance and product quality, including the content of highly unsaturated fatty acids.
About the Authors
S. V. BindukovRussian Federation
Okruzhnoy proezd, 19, Moscow, 105187
I. V. Burlachenko
Russian Federation
Okruzhnoy proezd, 19, Moscow, 105187
R. V. Artemov
Russian Federation
Okruzhnoy proezd, 19, Moscow, 105187
V. V. Gershunskaya
Russian Federation
Okruzhnoy proezd, 19, Moscow, 105187
M. V. Arnautov
Russian Federation
Okruzhnoy proezd, 19, Moscow, 105187
N. Yu. Terpugova
Russian Federation
Okruzhnoy proezd, 19, Moscow, 105187
References
1. Aleksandrova M. A. 2021. Prospects for commercial salmon farming in the European North of Russia // Trudy VNIRO. V. 185. P. 120-133. DOI: 10.36038/2307‑3497‑2021‑185‑120‑133. (In Russ.).
2. Barulin N. V., Liman M. S., Novikova E. G., Shumsky K. L., Atroschenko L. O., Rogovtsov S. V., Plavsky V.Yu. 2016. Recommendations for the cultivation of rainbow trout hatchery material in fish-breeding industrial complexes (with temporary standards). Gorki: BHSA. 180 p. (In Russ.).
3. Bindukov S. V., Baskakova Yu.A., Gershunskaya V. V. 2025. Fatty acid biosynthesis in tissues of rainbow trout Oncorhynchus mykiss reared on plant oil feeds // Lipids 2025: All- Russ. Conf. with Intern. Participation and School for Young Scientists, September 8-12, 2025. Book of abstracts. Petrozavodsk: KarelRCof the RAS. P. 34-35. (In Russ.).
4. Bindukov S. V., Burlachenko I. V., Baskakova Yu.A., Artemov R. V., Arnautov M. A., Novoselova Yu.A., Gershunskaya V. V. 2022. Fish oil replacement with vegetable oils in compound feeds for rainbow trout // Trudy VNIRO. V. 187. P. 138-148. DOI: 10.36038/2307‑3497‑2022‑187‑138‑148. (In Russ.).
5. Burlachenko I. V., Yakhontova I. V., Barinova V. V. 2024. On the application of the principles of the best aquaculture practices in Russian aquaculture // Trudy VNIRO. V. 198. P. 64-74. DOI 10.36038/2307-3497-2024-198-64-74 (In Russ.).
6. Vasil’eva O.B., Nazarova M. A., Nemova N. N. 2023. Assimilation of exogenous fatty acids in tissues of rainbow trout Parasalmo mykiss (Walbaum, 1792) in aquaculture // Vestnik of Astrakhan STU. Series: Fishing Industry. N. 1. P. 98-104. DOI: 10.24143/2073‑5529‑2023‑1‑98‑104 (In Russ.).
7. Gladyshev M. I. 2021. Terrestrial sources of polyunsaturated fatty acids for aquaculture // Journal of Ichthyology. V. 61. № 4. P. 632-645. (In Russ.).
8. Gladyshev M. I. 2012. Essential Polyunsaturated Fatty Acids and their Dietary Sources for Man // Journal of Siberian Federal University. Biology. V. 5. N. 4. P. 352-386. (In Russ.).
9. Pravdin I. F. 1966. Manual for fish study. Moscow: Pishchevaya Promyshlennost’. 374 p. (in Russ.).
10. FAO. 2024. The State of World Fisheries and Aquaculture. «Blue Transformation» in action. Rome: FAO. 232 p. DOI: 10.4060/cd0683ru (In Russ.).
11. Fokina N. N., Lysenko L. A., Ruokolainen T. R., Sukhovskaya I. V., Kantserova N. P., Nemova N. N. Dependence of the lipid and unsaturated fatty-acid compositions in rainbow- trout skeletal muscle on the rearing conditions and physiological status of fish// Applied Biochemistry and Microbiology. V. 56, N 3. P. 305-312. DOI 10.31857/S0555109920030034 (In Russ.).
12. Khurtina S. N., Murzina S. А., Kuznetsova М. V., Nemova N. N. 2024. Influence of different lighting and feeding regimes on the expression of the fadsd5, fadsd6, elovl2, elovl5a desaturase and elongase genes in the liver of juvenile Atlantic Salmon Salmo salar L. under aquaculture conditions// Proceedings of the RAS. Biological series. N. P. С. 695-704. DOI: 10.31857/S1026347024060024. (In Russ.).
13. Shcherbina M. A., Gamygin E. A. 2006. Fish feeding in freshwater aquaculture Moscow: VNIRO Publish. 360 p. (In Russ.).
14. Glencross B. D., Bachis E., Betancor M. B., Calder P., Liland N., Newton R., Ruyter B. 2024. Omega‑3 Futures in Aquaculture: Exploring the Supply and Demands for Long- Chain Omega‑3 Essential Fatty Acids by Aquaculture Species // Reviews in Fisheries Science & Aquaculture. 1-50. DOI: 10.1080/23308249.2024.2388563
15. Gregory M. K., Collins R. O., Tocher D. R., James M. J., Turchini G. M. 2016. Nutritional regulation of long-chain PUFA biosynthetic genes in rainbow trout (Oncorhynchus mykiss) // British Journal of Nutrition. V. 115(10):1721-1729. DOI:10.1017/S0007114516000830
16. Kajbaf K., Overturf K., Cleveland B., Kumar V. 2025. Regulation of the ω‑3 fatty acid biosynthetic pathway and fatty acids bioconversion capacity in selected rainbow trout (Oncorhynchus mykiss) using alternative dietary oils // Animal Feed Science and Technology. V. 320: 116219. DOI: 10.1016/j.anifeedsci.2025.116219
17. Katan T., Xue X., Caballero- Solares A., Taylor R. G., Rise M. L., Parrish C. C. 2020. Influence of Dietary Long- Chain Polyunsaturated Fatty Acids and ω6 to ω3 Ratios on Head Kidney Lipid Composition and Expression of Fatty Acid and Eicosanoid Metabolism Genes in Atlantic Salmon (Salmo salar) // Frontiers in Molecular Biosciences. V. 7. P. 602587. DOI: 10.3389/fmolb.2020.602587
18. Lutfi E., Berge G. M., Bæverfjord G., Sigholt T., Bou M., Larsson T. et al. 2023. Increasing dietary levels of the n‑3 longchain PUFA, EPA and DHA, improves the growth, welfare, robustness and fillet quality of Atlantic salmon in sea cages // British Journal of Nutrition. V. 129. P. 10-28. DOI: 10.1017/S0007114522000642
19. Monroig O., Shu- Chien A.C., Kabeya N., Tocher D. R., Castro L. F.C. 2022. Desaturases and elongases involved in long-chain polyunsaturated fatty acid biosynthesis in aquatic animals: From genes to functions // Progress in lipid research. V. 86. 101157. DOI: 10.1016/j.plipres.2022.101157
20. Rasmussen R. S. 2001. Quality of farmed salmonids with emphasis on proximate composition, yield and sensory characteristics // Aquaculture Research. V. 32. 767-786. DOI: 10.1046/j.1365‑2109.2001.00617.x
21. Thanuthong T., Francis D. S., Senadheera S. P.S.D., Jones P. L., Turchini G. M. 2011. LC-PUFA Biosynthesis in Rainbow Trout is Substrate Limited: Use of the Whole Body Fatty Acid Balance Method and Different 18:3n‑3/18:2n‑6 Ratios // Lipids. V. 46. P. 1111-1127. DOI: 10.1007/s11745‑011‑3607‑4
22. Tocher D. R., Betancor M. B., Sprague M., Olsen R. E., Napier J. A. 2019. Omega‑3 Long- Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand // Nutrients. V. 11 (1): 89. DOI: 10.3390/nu11010089
23. Torres M., Navarro J. C., Varó I., Monroig Ó., Hontoria F. 2020. Nutritional regulation of genes responsible for long-chain (C20-24) and very long-chain (>C24) polyunsaturated fatty acid biosynthesis in post-larvae of gilthead seabream (Sparus aurata) and Senegalese sole (Solea senegalensis) // Aquaculture. V. 525. P. 735314. DOI: 10.1016/j.aquaculture.2020.735314
24. Turchini G. M., Francis D. S. 2009. Fatty acid metabolism (desaturation, elongation and β-oxidation) in rainbow trout fed fish oilor linseed oil-based diets // British Journal of Nutrition. V. 102 (1). P. 69-81. DOI: 10.1017/S0007114508137874
25. Turchini G. M., Francis D. S., Keast R. S.J., Sinclair A. J. 2011. Transforming salmonid aquaculture from a consumer to a producer of long chain omega‑3 fatty acids // Food Chem. V. 124. P. 609-614. DOI: 10.1016/j.foodchem.2010.06.083
26. Turchini G. M., Francis D. S., Du Z. Y., Olsen R. E., Ringø E., Tocher D. R. 2022. The Lipids // Fish Nutrition. Chapt. 5. Academic Press, P. 303-467. DOI: 10.1016/B978‑0‑12‑819587‑1.00003‑3
27. Xie D., Chen C., Dong Y., You C., Wang S., Monroig O., Tocher D. R., Li Y. 2021. Regulation of long-chain polyunsaturated fatty acid biosynthesis in teleost fish // Progress in Lipid Research. V. 82. P. 101095. DOI: 10.1016/j.plipres.2021.101095
28. Yu H.-R., Li L.-Y., Xu C.-M., Li M., Li F.-H., Guo M.-J., Qiu X.-Y., Shan L.L. 2022. Effect of dietary eicosapentaenoic acid (20:5n‑3) on growth performance, fatty acid profile and lipid metabolism in coho salmon (Oncorhynchus kisutch) alevins // Aquaculture Reports. V. 23: 101084. DOI: 10.1016/j.aqrep.2022.101084
Review
For citations:
Bindukov S.V., Burlachenko I.V., Artemov R.V., Gershunskaya V.V., Arnautov M.V., Terpugova N.Yu. Lipid metabolism of rainbow trout reared on diets with different ratios of polyunsaturated fatty acids. Trudy VNIRO. 2025;200:117-130. (In Russ.) https://doi.org/10.36038/2307-3497-2025-200-117-130. EDN: SLWVRW





























