Genetic diversity of stellate sturgeon of the Ural River
Abstract
The results of genetic variability of five variable microsatellite loci (Afug41, Afug51, An20, AoxD 161, AoxD 165) of stellate sturgeon, wild and artificial propagate juveniles of the Ural River are presented. Material submitted for the period 2014–2017. To assess the genetic diversity, the most informative are the loci Afug41, AoxD 161 and AoxD 165, which have the largest number of frequency-balanced alleles. Distribution of frequencies of genotypes at five microsatellite loci did not reveal intrapopulation differentiation among the spawning migrants, naturally spawned juveniles and fingerlings obtained by artificial reproduction at sturgeon fish farm hatchery of the Ural River from different years. At loci (An20, Afug51 and), there is a decrease in allelic diversity in the artificially propagate juveniles in 2014–2016 relative to the spawning migrants and wild juveniles of stellate sturgeon. These losses are still insignificant, since for the artificial reproduction at the Ural River of the Ural River, currently the producers are not from aquaculture, but from the natural environment and with high natural polymorphism.
About the Authors
G. M. ShalgimbayevaRussian Federation
Almaty
A. E. Barmintseva
Russian Federation
Moscow
L. N. Mugue
Russian Federation
Moscow
K. B. Isbekov
Russian Federation
Almaty
N. S. Mugue
Russian Federation
Moscow
References
1. Bokova E. B., Dzhunusova G. G. 2016. Problemnye voprosy sostoyaniya nerestilishch osetrovykh vidov ryb r. Ural (Zhajyk) [Problematic issues of sturgeon spawning grounds of the Ural River (Zhayyk)] // Sb. nauch. tr. Mezhd. nauch. — prakt. konf. «Novejshie dostizheniya v nauke i obrazovanii». Smolensk. S. 8–12.
2. Vlasenko A. D. Zakharov S. S. 1989. O sostoyanii ulovov i vosproizvodstve oserovykh na r. Ural [State of catches and reproduction of sturgeon on the Ural River] // Osetrovoe khozyajstvo vodoemov SSSR. Tez. nauch. dokl. k predstoyashchemu Vsesoyuz. soveshch., noyabr’. CH. 1. Astrakhan’. S. 55–57.
3. Khodorevskaya R. P., Kalmykov V. A., Zhilkin A. A. 2012. Sovremennoe sostoyanie osetrovykh Kaspijskogo bassejna i mery po ikh sokhraneniyu [Сurrent state of sturgeon of the Caspian basin and measures for their preservation] // Vodnye resursy i ikh ratsional’noe ispol’zovanie // Vestnik AGTU. Vyp. 3. S. 99–106.
4. Chebanov M. S., Galich E. V. 2013. Rukovodstvo po iskusstvennomu vosproizvodstvu osetrovykh ryb [Sturgeon Hatchery Manual]. Tekhnicheskie Doklady OON po rybnomy khozyistvy i akvakul’ture. Ankara. 325 s.
5. Shalgimbaeva G. M.. Bokova E.B, Popov N. . N., Asylbekova S. Zh., Isbekov K. B., Mikodina E. V., Myuge N. S.... 2016. Sovremennoe sostoyanie sevryugi (Acipenser stellatus Pallas, 1771) reki Ural [Current state of the stellate sturgeon (Acipenser stellatus Pallas, 1771) of the Ural River] // Vestnik AGTU. T. 4. S. 32–41.
6. Shishanova E. I. 2003. Ehkologo-morfologicheskaya i geneticheskaya izmenchivost’ populyatsii sevryugi r. Ural [Еenvironmental and genetic variability of stellate sturgeon populations of the Ural River]. Diss. … kand. biol. nauk. M. Izd-vo VNIRO. 169 s.
7. Barmintseva A. E., Mugue N. S. 2013. The use of microsatellite loci for identification of sturgeon species (Acipenseridae) and hybrid forms // Russ. J. Genetic. V. 49. P. 950–961.
8. Doukakis P., Birstein V. J., De Salle R. 2005. Intraspecific structure within three caviar producing sturgeons (Acipenser gueldenstaedtii, A. stellatus and Huso huso) based on mitochondrial DNA analysis // J. Appl. Ichthyol. V. 21. P. 457–460.
9. Ivanova N. V., deWaard J., Hebert P. D.N. 1999. An inexpensive, automation-friendly protocol for recovering high-quality DNA // Molecular Ecology Notes. V. 6. P. 998–1002.
10. Ludwig A., Belfiore N. M., Pitra C., Svirsky V., Jeneckens I. 2001. Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus) // Genetics. V. 158. P. 1203–1215.
11. Norouzi M., Pourkazemi M. 2015. Analysis of genetic variability and differentiation of stellate sturgeon, (Acipenser stellatus Pallas, 1771), in the North (Volga and Ural Rivers) and South Caspian Sea (estuary of Sefidrud) // Intern. J. of Bioscience. Vol. 6. No. 5. P. 94–102, 2015.
12. Qiwei W. 2010. Acipenser stellatus // IUCN 2011. IUCN Red List of Threatened Species. Version 2011.2. URL: www.iucnredlist.org Accessible via: 20.05.2018.
13. Rajkov J., Shao Z., Berrebi P. 2014. Evolution of polyploidy and functional diploidization in sturgeons: microsatellite analysis in 10 sturgeon species // J. of Heredity. V. 105. P. 521–531.
14. Welsh A., May B. 2006. Development and standardization of disomic microsatellite markers for lake sturgeon genetic studies // J. of Applied Ichthyology. V. 22. P. 337–344.
15. Zeng Q., Ye1 H., Ludwig A., Wang Z., Zhang Y., Peng Z. 2013. Microsatellite development for the endangered Yangtze sturgeon (Acipenser dabryanus Dumeril, 1869) using 454 sequencing // J. of Applied Ichthyology V. 29. P 1219–1221.
Review
For citations:
Shalgimbayeva G.M., Barmintseva A.E., Mugue L.N., Isbekov K.B., Mugue N.S. Genetic diversity of stellate sturgeon of the Ural River. Trudy VNIRO. 2018;171:95-105. (In Russ.)