To the development of the thermal marking technique of otoliths turbot larvae
https://doi.org/10.36038/2307-3497-2022-188-67-77
Abstract
The aim of the study was to determine the possibility of thermal marking of larvae and juvenile turbot otoliths used to identify factory juveniles produced to recruitment natural populations.
Methods used: three consecutive cycles of a sharp decrease in water temperature in the range of 3.7–7.0 °C were used and also recovering the water temperature to optimal for thermal marking under experimental conditions for three groups of different ages larvae. To assess the marking results, larvae were fixed, then otoliths (sagittae and lapilli) were extracted, ground manually on Buehler grinding discs and viewed on a Leica DMLS trinocular microscope.
Novelty: thermal marking of otoliths of flounder fish larvae was carried out for the first time.
Result: The possibility of thermal marking of larvae and early juveniles otoliths of turbot is shown. It was found that the best marks on otoliths can be obtained when marking at the final stages of metamorphosis (at the age of 45–47 days), after the settlement to a bottom. The optimal temperature gradient is 5–6 °C, with a duration of exposure to low temperature for 5 hours, an interval between marking cycles of 5 hours and the use of at least three consecutive marking cycles.
Practical significance: The results of the study can be used for mass marking of turbot in order to determine the contribution of artificially reproduced juveniles to the recruitment of natural populations, as well as in the development of methods for marking fish — objects of artificial reproduction of various systematic groups.
About the Authors
E. B. FursenkoRussian Federation
Elizaveta B. Fursenko
105187
19, Okruzhnoy proezd
Moscow
I. V. Burlachenko
Russian Federation
Irina V. Burlachenko
105187
19, Okruzhnoy proezd
Moscow
References
1. Akinicheva E. G. 2006. Features of dry marking of Pacific salmon // Modern problems of salmon hatcheries in the Far East. Mat. inter. sci.-prakt. the seminar. Petropavlovsk-Kamchatsky: Kamchatka Printing Yard. P. 224–234 (In Russ.).
2. Kumantsov M. I. 2013. Black Sea turbot: state of reserves and ways of their conservation and restoration // Trudy VNIRO. Vol. 150. P. 21–34 (In Russ.).
3. Maslova O. N. 2013. Breeding and commercial cultivation of the Black Sea turbot Scophthalmus maeoticus: problems and methods // Trudy VNIRO. T. 150. P. 35–49 (In Russ.).
4. Popova V. P., Kokoz L. M. 1973. Dynamics of the population of the Black Sea turbot and its rational exploitation // Trudy VNIRO. Vol. 91. pp. 151–160 (In Russ.).
5. Fursenko E. B. 2021. Thermal marking of otoliths in common pike larvae // Trudy VNIRO. Vol. 183. P. 75–86. DOI:10.36038/2307–3497–2021–183–75–86 (In Russ.).
6. Khanaichenko A. N., Giragosov V. E. 2021. The Black Sea kalkan and its closest relative, turbot. Sevastopol: FITZ InBUM. 252 p. DOI:10.21072/978–5–6044865–6–6 (In Russ.).
7. Bashey F. A. 2004. Comparison of the Suitability of Alizarin Red S and Calcein for Inducing a Non lethally Detectable Mark in Juvenile Guppies // Transactions of the American Fisheries Society. V. 133. Is. 6. P. 1516–1523. DOI:10.1577/T03–073.1
8. Bergstad O. A. Folkvord А. 1997. Dispersal of tagged juvenile turbot Scophthalmus maximus on the Norwegian Skagerrak coast // Fisheries Research. V. 29. Is. 3. P. 211–215. https://doi.org/10.1016/S0165–7836(96)00543–7
9. Campana S. E. 1983. Factors affecting the production of daily growth increments in the otoliths of fishes. The University of British Columbia. 151 p.
10. Campana S. E., Neilson J. D. 1985. Microstructure of fish otoliths // Can. J. of Fisheries and Aquatic Sciences. № 42. Р. 1014–1032. DOI:10.1139/f85–127
11. Campanella D., Gаrriz А., Colautti D. C., Somoza G. M., Miranda L. A. 2013. Osmotic induction marking with Alizarin Red S on juveniles of pejerrey, Odontesthes bonariensis (Atherinopsidae) // Neotropical Ichthyology. V. 11 (1). P. 95–100. DOI:10.1590/S1679–62252013000100011
12. Eckmann R., Rey P. 1987. Daily increments on the otoliths of larval and juvenile Coregonus spp., and their modification by environmental factors // Hydrobiologia. V. 148. P. 137–143. DOI:10.1007/BF00008399
13. Edeyer A., De Pontual H., Payan P., Troadec H., Severe A., Mayer-Gostan N. 2000. Daily variations of the saccular endolymph and plasma compositions in the turbot Psetta maxima: relationship with the diurnal rhythm in otolith formation // Mar. Ecol. Prog. Ser. № 192. Р. 287–294. DOI:10.3354/meps192287
14. Iglesias J., Rodriguez-Ojea G. 1997. The use of alizarin complexone for immersion marking of the otoliths of embryos and larvae of the turbot, Scophthalmus maximus (L.): Dosage and treatment time // Fisheries Management and Ecology. V. 4 (5). Р. 405–417. DOI:10.1046/j.1365–2400.1997.00052
15. Isshiki T., Katayama S. 2007. Otolith staining by oral administration of alizarin complexone with enteric-coated microcapsules for juvenile Japanese flounder (Paralichthys olivaceus) // Bull. Kanagawa Prefect. Fish. Tech. Cent. I. 2. P. 43–49
16. Liu Q., Zhang X. M., Zhang P. D., Sylvanus N. 2009. The use of alizarin red S and alizarin complexone for immersion marking Japanese flounder Paralichthys olivaceus (T.) // Fisheries Research. V. 98 (1). P. 67–74. DOI:10.1016/j.fishres.2009.03.014
17. Oesau S., Thaller G., Schulz C., Tetens J. 2013. Application of PIT tags for individual identification of turbot (Scophthalmus maximus) // Archiv Tierzucht. V. 56. 28. P. 285–292. DOI:10.7482/0003–9438–56–028
18. Victor B. C. 1982. Daily otolith increments and recruitment in two coral-reef wrasses, Thalassoma bifasciatum and Halichoeres bivittatus // Mar. Biol. V. 71. P. 203–208. DOI:10.1007/BF00394631
19. Walker S. P.W., McCormick M.I. 2004. Otolith-check formation and accelerated growth associated with sex change in an annual protogynous tropical fish // Mar. Ecol. Prog. Se. Vol. 266. P. 201–212. DOI:10.3354/meps266201
20. Wang N., Eckmann R. 1992. Effects of photoperiod, feeding regime and water temperature on the formation of daily growth increments in otoliths of larval pike (Esox lucius L.) // J. Appl. ichthyol. V. 8. P. 246–250. DOI:10.1111/j.1439–0426.1992.tb00690.x
21. Yang K., Zeng R., Gan W., Deng L., Song Z. 2016. Otolith fluorescent and thermal marking of elongate loach (Leptobotia elongata) at early life stages // Environ. Biol. Fish. V. 99. P. 687–695. DOI:10.1007/s10641–016–0509–6
Review
For citations:
Fursenko E.B., Burlachenko I.V. To the development of the thermal marking technique of otoliths turbot larvae. Trudy VNIRO. 2022;188:67-77. (In Russ.) https://doi.org/10.36038/2307-3497-2022-188-67-77