Preview

Trudy VNIRO

Advanced search

Mercury and organic matter content in bottom sediments of the Barents and Kara Seas

https://doi.org/10.36038/2307-3497-2025-199-166-176

EDN: KCWOHQ

Abstract

This study aims to obtain new data on the content of total mercury (Hg) and organic matter (OM) in bottom sediments (BS) of the Barents and Kara Seas, as well as an assessment of the relationship of these parameters.

The material for this study: The research material was samples of BS selected during the expedition of the scientific research vessel Akademik Nikolay Strakhov from June 25 to July 28, 2019 in the Barents and Kara Seas when performing the tasks of studying BS and assessing the anthropogenic impact on ecosystems.

Novelty: The paper presents new original materials on the study of the content of total Hg and OM in BS of the Barents and Kara Seas, as well as an assessment of the relationship of these parameters for marine soils of these Arctic waters.

Methods used: the total mercury content in the samples was estimated by the method of flame-free atomic absorption on the mercury analyzer RA-915M (Russia). The determination of the relative content of organic matter was performed in accordance with Russian standard (GOST 23740-2016) by the gravimetric calcination method to a constant mass (“Loss on Ignition”). Statistical data processing and charting were carried out in the MS Excel 2016 environment and the Statistica 13.

Results: The results of a study of the content of total Hg and OM in the BS of the Barents and the Kara Seas are presented. In the BS of the Barents Sea, the Hg content varied from 13.95 to 50,15 μg/kg with an average value of 29.5 μg/kg of dry sediment, and in the BS of the Kara Sea – from 17.25 to 52.79 μg/kg with an average value of 37.5 μg/kg. The OM in the BS of both seas turned out to be approximately the same and amounted 2.4-2.6%. For the Barents Sea, a correlation has been established between the content of Hg and OM. The increased total Hg content in the BS of the Kara Sea probably reflects the contribution of the regional component.

Practical relevance: The results obtained will make it possible to better understand the processes associated with global mercury pollution of ecosystems in the Arctic.

About the Authors

М. А.  Novikov
Polar branch of VNIRO (N.M. Knipovich «PINRO»)
Russian Federation

6, Academician Knipovich St., Murmansk, 183038



Zh. V.  Vasileva
Murmansk Arctic University («MAU»)
Russian Federation

13, Sportivnaya St., Murmansk, 183010



A. A.  Yashkina
Murmansk Arctic University («MAU»)
Russian Federation

13, Sportivnaya St., Murmansk, 183010



E. A.  Kirdishova
Murmansk Arctic University («MAU»)
Russian Federation

13, Sportivnaya St., Murmansk, 183010



E. A.  Isakova
Laboratory of Medical and Biological Technologies KSC RAS
Russian Federation

Apatity, Murmansk region, 184029



References

1. Agatova A. I. 2017. Organic matter in the seas of Russia. Moscow: VNIRO Publish. 260 p. (In Russ.).

2. Belyaev N. A. M. Ponyatov.S., Peresypkin V. I. 2009. Organic carbon of the upper layer of bottom sediments of the western part of the Kara Sea // Geology of the seas and oceans: proceedings of the XVIII International Scientific Conference (school) on marine Geology. Moscow: GEOS. V. I. P. 17-20. (In Russ.).

3. Vetrov A.A., Romankevich E.A. 2011. The genesis of the organic matter of the bottom sediments of the Kara Sea // Oceanology. V.51. No. 4. P. 649-657. (In Russ.).

4. Vetrov A.A., Romankevich E.A. 2001. Organic carbon fluxes in the Arctic seas of Russia // Experience of systemic oceanological research in the Arctic. Moscow: Nauchny Mir. P. 227-234. (In Russ.).

5. Golubeva N.I., Matishov G.G., Burtseva L.V. 2005. Precipitation of heavy metals from the atmosphere with precipitation in the Barents Sea region // DAS. V. 401. No. 5. P. 683-686. (In Russ.).

6. Gorshkova T.I. 1975. Organic matter of modern shelf sediments of the northern seas of the USSR // Problems of shelf geology. Moscow: Nauka, P. 66-72. (In Russ.).

7. Gurevich V.I. 2002. Modern sedimentogenesis and geoecology of the Western Arctic shelf of Eurasia. Moscow: Scientific world. 135 p. (In Russ.).

8. Dobrovolsky A.D., Zalogin B.S. 1982. Seas of the USSR. Moscow: Moscow SU Publish. 146 p. (In Russ.).

9. Zakharchenko A.V., Tigeev A.A., Pasko O.A., Kolesnichenko L.G., Moskovchenko D.V. 2020. Regional and local geochemical transfers of substances deposited in snow cover // Geoecology. Engineering geology, hydrogeology, geocryology. No. 6. P. 41-53. DOI: 10.31857/S0869780920060119. (In Russ.).

10. Kravchishina M.D., Lein A.Yu., Sukhanova I.N., Artem’ev V. A., Novigatsky A.N. 2015. Genesis and spatial distribution of suspended particulate matter concentrations in the Kara Sea during maximum reduction of the Arctic ice sheet // Oceanology. V. 55. No 4. P. 623-643. DOI: 10.1134/S000143701503008X

11. Kuznetsov I.M. 1983. On ice exchange through the Kara Gate Strait // Proceedings of the AANIA. V. 380. Hydrology of the Arctic Ocean. Leningrad: Hydrometeoizdat. P. 123-128. (In Russ.).

12. Lein A.Yu., Makkaveev P.N., Savvichev A.S., Kravchishina M.D., Belyaev N. A., Dara O. M., Ponyaev M. S., Zakharova E. E., Rozanov A.G., Ivanov M.V., Flint M.V. 2013. The processes of transformation of suspension into sediment in the Kara Sea // Oceanology. V 53. No. 5. P. 643-679. DOI: 10.7868/S0030157413050080, (In Russ.).

13. Nemirovskaya I.A., Flint M.V. 2022. Features of the behavior of organic compounds in water and bottom sediments in the Kara Sea during the descent of seasonal ice // Oceanology. V. 62. No. 1. P. 64-74. DOI: 10.31857/S0030157422010117. (In Russ.).

14. Novikov M.A. 2017. On the issue of background values of heavy metal levels in the bottom sediments of the Barents Sea // Bulletin of the Moscow STU. V. 20. No. 1/2. P. 280- 288. DOI: 10.21443/1560-9278-2017-20-1/2-280-288. (In Russ.).

15. Novikov M.A. 2021. Persistent organic pollutants in bottom sediments of the Barents Sea // Water resources. V. 48. No. 3. P. 334-343. DOI: 10.31857/S032105962103010X. (In Russ.).

16. Novikov M.A., Titov O.V., Zhilin A.Yu. 2019. Metal content in bottom sediments of the central part of the Pechora Sea in the modern period // Bulletin of the MSTU. V. 22. No. 1. P. 188-198. DOI: 10.21443/1560-9278-2019-22-1-188-198. (In Russ.).

17. Novikov M.A., Draganov D.M. 2021. Atlas of pollution of bottom sediments of the Barents Sea. Murmansk: N.M. Knipovich PINRO Publish. 183 p. (In Russ.).

18. Ozhigin V.K., Ivshin V.A., Trofimov A.G., Karsakov A.L., Antsiferov M. Yu. 2016. The waters of the Barents Sea: structure, circulation, variability. Murmansk: PINRO Publish. 260 p. (In Russ.).

19. Romankevich E. A., Vetrov A. A. 2021. Carbon in the oceans. Moscow: GEOS press. 352 p. DOI: 10.34756/GEOS.2021.16.37857. (In Russ.).

20. Sukhanova I.N., Flint M.V., Mosharov S.A., Sergeeva V.M. 2010. Structure of the phytoplankton communities and primary production in the Ob River estuary and over the adjacent Kara Sea shelf // Oceanology. V. 50. No. 5. Р.743-758. DOI: 10.1134/S0001437010050115

21. Cherkasova E.V., Mironenko M.V., Sidkina E.S. 2021. Kinetic and thermodynamic modeling of acid drainage of a combined technological sample from the Pavlovskoye field (Novaya Zemlya Archipelago, Yuzhny Island). preliminary assessment // Geochemistry. V. 66. No. 2. P. 183-190, DOI: 10.31857/S0016752521020035. (In Russ.).

22. Ecosystem of the Kara Sea 2008. / B. F. Prishchepa ed. Murmansk: PINRO Publish. 261 p. (In Russ.).

23. Aksentov K. I., Astakhov A. S., Ivanov M. V., Alatortsev A. V., Sattarova V.V., Mariash A.A., Shi X., Hu L., Melgunov M.S. 2021. Assessment of mercury levels in modern sediments of the East Siberian Sea // Marine Pollution Bulletin. Vol. 168. (112426). DOI: 10.1016/j.marpolbul.2021.112426

24. AMAP Assessment 2002: Heavy Metals in the Arctic. Arctic Monitoring and Assessment Programme (АМАР). 2005. Oslo, Norway. 265 p. DOI: 10.13140/RG.2.1.2437.4160

25. AMAP Assessment 2011: Mercury in the Arctic. Arctic Monitoring and Assessment Programme (AMAP). 2011. Oslo, Norway. 193 p.

26. Ball D.F. 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soils // J. Soil Sci. V. 15. P. 84-92.

27. Bank M. S., Frantzen S., Duinker A., Amouroux D., Tessier E., Nedreaas K., Maage A., Nilsen B. M. 2021. Rapid Temporal Decline of Mercury in Greenland Halibut (Reinhardtius hippoglossoides) // Environmental Pollution. V. 289. Is. 117843. DOI: 10.1016/j.envpol.2021.117843

28. Beldowski J., Miotk M., Zaborska A., Pempkowiak J. 2015. Distribution of sedimentary mercury off Svalbard, European Arctic // Chemosphere. V. 122. P. 190-198. DOI: 10.1016/j.chemosphere.2014.11.050

29. Bensharada M., Telford R., Stern B., Gaffney V. 2022. Loss on ignition vs. thermogravimetric analysis: a comparative study to determine organic matter and carbonate content in sediments // J. Paleolimnol. V. 67. P. 191-197. DOI: 10.1007/s10933-021-00209-6

30. Benzik A.N., Orlov A.M., Novikov M.A. 2021. Marine seabed litter in Siberian Arctic: a first attempt to assess // Marine Pollution Bulletin. V. 172. Is. 112836. DOI: 10.1016/j.marpolbul.2021.112836

31. Boszke L., Kowalski A., Glosifiska G. Szarek R., Siepak J. 2003. Environmental factors affecting speciation of mercury in the bottom sediments; an overview // Polish Journal of Environmental Studies. V. 12. No. 1. P. 5-13.

32. Coquery M., Cossa D., Martin J.M. 1995. The distribution of dissolved and particulate mercury in three Siberian estuaries and adjacent Arctic coastal waters // Water, Air, and Soil Pollution. V. 80, P. 653-664. DOI: 10.1007/BF01189718

33. Dean W.E. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods // J. Sed. Petrol. V. 44. P. 242-248.

34. Fedorov Y.A., Ovsepyan A.E., Zimovets A.A., Savitskiy V.A., Dotsenko I.V., Lisitsyn A.P., Shevchenko V.P., Novigatsky A.N. 2019. Mercury Distribution in Bottom Sediments of the White Sea and the Rivers of Its Basin // Sedimentation Processes in the White Sea. / A.P. Lisitsyn, L.L. Demina ed. Р. 208-241. DOI: 10.1007/978-3-030-05111-2

35. Golubeva N., Burtseva L., Matishov G. 2003. Measurements of mercury in the near-surface layer of the atmosphere of the Russian Arctic // Science of the total environment. V. 306. No. 1/3. P. 3-9. DOI: 10.1016/S0048-9697(02)00480-1

36. Hansen B., Osterhus S., Gould W.J., Rickards L.J. 1998. North Atlantic-Norwegian Sea Exchanges: the ICES NANSEN Project // North Atlantic-Norwegian Sea Exchanges: the ICES NANSEN Project. ICES Cooperative Res. Rep. № 225. P. 3-82.

37. Ji X., Abakumov E., Xie X. 2019. Atmosphere–ocean exchange of heavy metals and polycyclic aromatic hydrocarbons in the Russian Arctic Ocean // Atmospheric Chemistry and Physics. V. 19. No. 22. P. 13789-13807. DOI: 10.5194/acp-19-13789-2019

38. Loring D.H., Dahle S., Naes K., Santos D., Skei J.M., Matishov G.G. 1998. Arsenic and other trace metals in sediments from the Kara Sea and the Ob and Yenisey estuaries, Russia // Aquatic Geochemistry. V. 4. P. 233-252. DOI: 10.1023/A:1009691314353

39. Pathirana I., Knies J., Felix M., Mann U. 2014. Towards an improved organic carbon budget for the western Barents Sea shelf // Climate of the Past. V. 10. P. 569-587. DOI: 10.5194/cp-10-569-2014

40. Pavlov V.K., Pfirman S.L. 1995. Hydrographic structure and variability of the Kara Sea: Implications for pollutant distribution // Deep Sea Research Part II: Topical Studies in Oceanography. V. 42. No. 6. P. 1369-1390, DOI: 10.1016/0967-0645(95)00046-1

41. Rodrigues P.A., Ferrari R.G., Santos L.N., Junior A.C. 2019. Mercury in aquatic fauna contamination: A systematic review on its dynamics and potential health risks // Journal of Environmental Sciences (Beijing, China). V. 84. P. 205-218. DOI: 10.1016/j.jes.2019.02.018.

42. Ryaboshapko A., Bullock R., Ebinghaus R., Ilyin I., Lohman K., Munthe J., Petersen G., Seigneur Ch., Wängberg I. 2002. Comparison of mercury chemistry models // Atmospheric Environment. V. 36. Is. 24. Р. 3881-3898. DOI: 10.1016/S1352-2310(02)00351-5

43. Siegel F.R., Kravitz J.H., Galasso J.J. 2001. Arsenic and mercury contamination in 31 cores taken in 1965, St. Anna Trough, Kara Sea, Arctic Ocean // Environmental Geology. V. 40, P. 528-542. DOI: 10.1007/s002540000194

44. Sommar J., Andersson M. E., Jacobi H.-W. 2010. Circumpolar measurements of speciated mercury, ozone and carbon monoxide in the boundary layer of the Arctic Ocean // Atmospheric Chemistry and Physics. V. 10:5031-5045. DOI: 10.5194/acp-10-5031-2010

45. Stevenson M.A., Faust J.C., Andrade L.L., Freitas F.S., Gray N.D., Tait K., Hendry K. R., Hilton R. G., Henley S. F., Tessin A., Leary P., Papadaki S., Ford A ., März C., Abbott G. D. 2020. Transformation of organic matter in a Barents Sea sediment profile: coupled geochemical and microbiological processes // Phil. Trans. R. Soc. A 378: 20200223. DOI: 10.1098/rsta.2020.0223


Review

For citations:


Novikov М.А., Vasileva Zh.V., Yashkina A.A., Kirdishova E.A.,  Isakova E.A. Mercury and organic matter content in bottom sediments of the Barents and Kara Seas. Trudy VNIRO. 2025;199:166-176. (In Russ.) https://doi.org/10.36038/2307-3497-2025-199-166-176. EDN: KCWOHQ



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-3497 (Print)

По вопросу подписки и приобретения номеров журналов просьба обращаться в ООО «Агентство «КНИГА-СЕРВИС» (т.:  495 – 680-90-88;  E-mail: public@akc.ru  Web: www.akc.ru).