Молекулярно-генетические подходы к изучению устойчивости рыб к болезням
https://doi.org/10.36038/2307-3497-2025-199-142-156
EDN: IKIBMB
Аннотация
Цель обзора: обобщить актуальные сведения о вирусных, бактериальных и паразитарных болезнях рыб, на устойчивость к которым ведутся в настоящее время поиски молекулярных маркеров. Излагаются преимущества проведения экспериментальных исследований на особях, включённых в полногеномные ассоциативные исследования в сочетании со сравнительным анализом экспрессии иммунных генов у поражённых рыб и у контрольных рыб, не подвергавшихся воздействию патогена.
Используемые методы: сравнительный анализ современных литературных данных, метод деконструкции, при котором тщательно были отобраны исследования, отражающие основные моменты изученных на сегодняшний день данных по иммунному ответу рыб.
Результатом обзора являются структурированные данные по исследованиям иммунного ответа рыб к различным патогенам.
Значимость: аквакультура год от года сталкивается с ростом разнообразия патогенных микроорганизмов, поражающих культивируемую рыбу. Рыбная отрасль нуждается в более эффективных и быстрых методах селекции. Традиционные селекционные подходы, нацеленные на увеличение естественной устойчивости рыб к болезням, требуют десятилетий, что связано с длительными сроками достижения половозрелости рыб. Применение полногеномных ассоциативных исследований (GWAS), а также регистрация таких маркеров, как микросателлиты и однонуклеотидные полиморфизмы (SNP), позволяет осуществлять селекцию с использованием маркерных методов. Исследования показывают, что эти технические подходы могут определять локусы количественных признаков (QTL) и выявлять особей с высокой естественной устойчивостью к болезням. Сравнительный анализ SNP у выживших и погибших рыб позволяет обнаружить специфические генетические маркеры, ассоциированные с устойчивостью, и точно определить их расположение в геноме. Полученные данные являются основой для подбора родительских генотипированных особей для выведения поколений рыб с повышенной устойчивостью в относительно короткие сроки.
Об авторах
О. В. АпаликоваРоссия
Набережная Макарова, 26, г. Санкт-Петербург, 199053
М. Н. Киселева
Россия
Набережная Макарова, 26, г. Санкт-Петербург, 199053
Д. К. Митрюшкина
Россия
Набережная Макарова, 26, г. Санкт-Петербург, 199053
К. Е. Воронов
Россия
Набережная Макарова, 26, г. Санкт-Петербург, 199053
Ю. Н. Лукина
Россия
Набережная Макарова, 26, г. Санкт-Петербург, 199053
пр-т Александра Невского, 50, г. Петрозаводск, 185030
Список литературы
1. Anderson E., Clouthier S., Shewmaker W., Weighall A., Lapatra S. 2010. Inactivated infectious haematopoietic necrosis virus (IHNV) vaccines // Journal of Fish Diseases. V. 31. P. 729- 745. DOI: 10.1111/j.1365-2761.2008.00960.x
2. Aslam M.L., Robledo D., Krasnov A., Moghadam H.K., Hillestad B., Houston R.D., Baranski M., Boison S., Robinson N.A. 2020. Quantitative trait loci and genes associated with salmonid alphavirus load in Atlantic salmon: implications for pancreas disease resistance and tolerance // Sci Rep. 10(10393):1-15. DOI:10.1038/s41598-020-67405-8.
3. Bakke T.A., Soleng A., Harris P.D. 1999. The susceptibility of Atlantic salmon (Salmo salar L.) × brown trout (Salmo trutta L.) hybrids to Gyrodactylus salaris Malmberg and Gyrodactylus derjavini Mikailov // Parasitology. V. 119. P. 467-481. DOI: 10.1017/s0031182099004990
4. Bakke T. A., Harris P. D., Cable J. 2002. Host specificity dynamics: observations on gyrodactylid monogeneans // Int J Parasitol. V. 32. P. 281-308. DOI: 10.1016/s0020-7519(01)00331-9
5. Baerwald M.R., Petersen J.L., Hedrick R.P., Schisler G., May B. 2011. A major effect of quantitative trait locus for whirling disease resistance identified in rainbow trout (Oncorhynchus mykiss) // Heredity. V. 106. P. 920-926. DOI:10.1038/hdy.2010.137.
6. Barria A., Christensen K.A., Yoshida G.M., Correa K., Jedlicki A., Lhorente J.P. 2018. Genomic predictions and genomewide association study of resistance against Piscirickettsia salmonis in Coho salmon (Oncorhynchus kisutch) using ddRAD sequencing // G3. P. 1183-1194. DOI: 10.1534/g3.118.200053.
7. Barria A., Marin-Nahuelpi R., Caceres P., Lopez M.E., Bassini L.N., Lhorente J.P. 2019. Single step genome wide association study for resistance to Piscirickettsia salmonis in rainbow trout (Oncorhynchus mykiss). // G3 9. P. 3833-3841. DOI: 10.1534/g3.119.400204
8. Bernatchez L., Landry C. 2003. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? // Evol. Biol. V. 16 P. 363-377. DOI: 10.1046/j.1420-9101.2003.00531.x
9. Braden L. M., Koop B. F., Jones S. R.M. 2015. Signatures of resistance to Lepeophtheirus salmonis include a TH2-type response at the louse-salmon interface // Dev Comp Immunol. No 48. P. 178-191. DOI: 10.1016/j.dci.2014.09.015
10. Boison S. A ., Gjerde B., Hillestad B., Makvandi-Nejad S., Moghadam H. K. 2019. Genomic and Transcriptomic Analysis of Amoebic Gill Disease Resistance in Atlantic Salmon (Salmo salar L.) // Front Genet. DOI: 10.3389/fgene.2019.00068
11. Caipang C. M.A., Hynes N., Puangkaew J., Brinchmann M. F., Kiron V. 2008. Intraperitoneal vaccination of Atlantic cod, Gadus morhua with heat-killed Listonella anguillarum enhances serum antibacterial activity and expression of immune response genes // Fish Shellfish Immunol. No 24: P. 314-322. DOI: 10.1016/j.fsi.2007.11.018
12. Chistiakov D.A., Kabanov F.V., Troepolskaya O.D., Tischenko M.M. 2010. A variant of the interleukin –1β gene in European sea bass, Dicentrarchus labrax L. , is associated with increased resistance against Vibrio anguillarum // J Fish Dis. V. 33. P. 759-767. DOI: 10.1111/j.1365-2761.2010.01182.x
13. Correa K., Lhorente J.P., Lopez M.E., Bassini L., Naswa S., Deeb N. 2015. Genome-wide association analyses reveals two loci associated resistance against Piscirickettsia salmonis in two Atlantic salmon (Salmo salar L.) chromosomes // BMC Genomics. V. 16. P. 854. DOI: 10.1186/s12864-015-2038-7
14. Dalvin S., Jørgensen L.V.G., Kania P.W., Grotmol S., Buchmann K., Øvergård A.-C. 2020. Rainbow trout Oncorhynchus mykiss responses to salmon louse Lepeophtheirus salmonis: from copepodid to adult stage // Fish Shellfish Immunol. No 103. P. 200-210
15. Dettleff P., Bravo C., Patel A., Martinez V. 2015. Patterns of Piscirickettsia salmonis load in susceptible and resistant families of Salmo salar // Fish Shellfish Immunol. No 45. P. 67-71. DOI: 10.1016/j.fsi.2015.03039
16. Dong X., Li J., He J., Liu W., Jiang L., Ye Y., Wu C. 2016. Antiinfective mannose receptor immune mechanism in large yellow croaker (Larimichthys crocea). // Fish Shellfish Immunol. No 54, C. 257-65. DOI: 10.1016/j.fsi.2016.04.006.
17. Dong X., Shilin M.B., Apalikova O.V., Lukina J.N., Golotin V.A., Li J., Zhang J. 2021. The Anti-Infective Immune Mechanism of the CCL2 and CCL3 Chemokines in the Large Yellow Croaker (Larimichthys сrocea) // Journal of Аpplied Ichthiology. DOI: 10.1111/jai.14214.
18. Du M., Chen S.L., Liu Y., Yang J.F. 2011. MHC polymorphism and disease resistance to Vibrio anguillarum in 8 families of half-smooth tongue sole (Cynoglossus semilaevis) // BMS Genetics. V. 12. P. 78. DOI: 10.1186/1471-2156-12-78
19. Fraslin C., Dechamp N., Bernard M., Krieg F., Hervet C., Guyomard R., Quillet E. 2018. Quantitative trait loci for resistance to Flavobacterium psychrophilum in rainbow trout: effect of the mode of infection and evidence of epistatic interactions // Genet. Sel. Evol. 50 (60), P. 1-16. DOI: 10.1186/s12711-018-0431-9.
20. Fraslin C., Quillet E., Rochat T., Dechamp N., Bernadet J.-F., Collet B., Lallias D., Boudinot P. 2020. Combining multiple approaches and models to dissect the genetic architecture of resistance to infection in fish // Front Genet. 11(677) P. 1-20. DOI: 10.3389/fgene.2020.00677
21. Gao Y., Pei C., Sun X., Zhang C., Li L., Kong X. 2018. Novel subunit vaccine based on grass carp reovirus VP35 protein provides protective immunity against grass carp hemorrhagic disease // Fish & Shellfish Immunology. V. 75. P. 91-98. DOI: 10.1016/j.fsi.2018.01.050
22. Gharbi K., Glover K.A., Stone L.C., MacDonald E.S., Matthews L., Grimholt U. 2009. Genetic dissection of MHC-associated susceptibility to Lepeophtheirus salmonis in Atlantic salmon // BMC Genet. 10. P. 20. DOI: 10.1186/1471-2156-1020
23. Gilbey J., Verspoor E., Mo T.A., Sterud E., Olstad K., Hytterød S. 2006. Identification of genetic markers associated with Gyrodactylus salaris resistance in Atlantic salmon Salmo salar // Dis Aquat Org. V. 71 P. 119-129. DOI: 10.3354/dao071119
24. Gjedrem T., Baranski M. 2009. Selective breeding in aquaculture: an introduction // Methods and Technologies in Fish Biology and Fisheries. Springer Dordrecht. V. 10. P. 221. DOI: 10.1007/978-90-481-2773-3
25. Gjedrem T., Gjøen H.M. 1995. Genetic variation in susceptibility of Atlantic salmon, Salmo salar L., to furunculosis, BKD and cold water vibriosis // Aquacult Res. V. 26(2). P. 129-134. DOI: 10.1111/j.1365-2109.1995.tb00892.x
26. Gjøen H. M., Refstie T., Ulla O., Gjerde B. 1997. Genetic correlations between survival of Atlantic salmon in challenge and field tests // Aquaculture. V. 158(3). P. 277- 288. DOI: 10.1016/S0044-8486(97)00203-2
27. Grimholt U., Larsen S., Nordmo R., Midtlyng P., Kjoeglum S., Storset A. 2003. MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar) facing pathogens with single expressed major histocompatibility class I and class II loci // Immunogenetics. V. 55. P. 210-219. DOI: 10.1007/s00251-003-0567-8
28. Haramoto E., KItajima M., Katayama H., Ohgaki S. 2007. Detection of koi herpesvirus DNA in river water in Japan. // Fish Dis. V. 30. P. 59-61. DOI: 10.1111/j.1365-2761.2007.00778.x
29. He J., Liu H., Yang J., Dong X., Wu C. 2016. Abundant members of Scavenger receptors family and their identification, characterization and expression against Vibrio alginolyticus infection in juvenile Larimichthys crocea // Fish and shellfish immunology. V. 50. P. 297-309. DOI: 10.1016/j.fsi.2016.02.009
30. Hedrick R.P., McDowell T.S., Marty G.D., Fosgate G.T., Mukkatira K., Myklebust K. 2003. Susceptibility of two strains of rainbow trout (one with suspected resistance to whirling disease) to Myxobolus cerebralis infection // Dis Aquat Org. V. 55. P. 37-44. DOI: 10.3354/dao055037
31. Holm H., Santi N., Kjøglum S., Perisic N., Skugor S., Evensen Ø. 2015. Difference in skin immune responses to infection with salmon louse (Lepeophtheirus salmonis) in Atlantic salmon (Salmo salar L.) of families selected for resistance and susceptibility // Fish Shellfish Immunol. No 42. P. 384- 394. DOI: 10.1016/j.fsi.2014.10.038
32. Houston R. D., Haley C. S., Hamilton A., Guy D. R., Tinch A. E., Taggart J. B. 2008. Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar) // Genetics. V. 178. P. 1109-1115. DOI: 10.1534/genetics.107.082974
33. Jaafar R., Ødegård J., Mathiessen H., Karami A.M., Marana M.H., Jørgensen L. V.G., Zuo S., Nielsen T., Buchmann K. 2020. Quantitative trait loci (QTL) associated with resistance of rainbow trout Oncorhynchus mykiss against the parasitic ciliate Ichthyophthirius multifiliis // J Fish Dis. 43(12). P. 1591-1602. DOI: 10.1111/jfd.13264
34. Karami A.M., Bani A., Pourkazemi M., Ghasemi M., Kania P.W., Buchmann K. 2018. Comparative susceptibilities and immune reactions of wild and cultured populations of Caspian trout Salmo trutta caspius to VHS // Dis Aquat Org. V. 128(3) P. 187-201. DOI: 10.3354/dao03231
35. Karami A.M., Mathiessen H., Ødegård J., Marana M.H., Jaafar R., Jørgensen L.V.G., Zuo S., Dalsgaard I., Nielsen T., Kania P.W., Buchmann K. 2020. Detecting a major QTL for Vibrio anguillarum resistance in rainbow trout // Front Genet. 11:607558. DOI: 10.3389/fgene.2020.607558
36. Khansari A.R., Balasch J.C., Vallejos-Vidal E., Teles M., FierroCastro C., Tort L., Reyes-Lуpez F.E. 2019. Comparative study of stress and immune-related transcript outcomes triggered by Vibrio anguillarum bacterin and air exposure stress in liver and spleen of gilthead seabream (Sparus aurata), zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss) // Fish Shellfish Immunol. No 86. P. 436-448. DOI: 10.1016/j.fsi.2018.11.063
37. Langefors A., Lohm J., Grahn M., Andersen O., Schantz V.T. 2001. Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon // Proc Biol Sci. 268(1466) P. 479-485. DOI: 10.1098/rspb.2000.1378.
38. Liu S., Vallejo R.L., Evenhuis J.P., Martin K.E., Hamilton A., Gao G., Palti Y. 2018. Retrospective evaluation of marker-assisted selection for resistance to bacterial cold water disease in three generations of a commercial rainbow trout breeding population // Front Genet. 9. P. 286. DOI: 10.3389/fgene.2018.00286
39. Lopez-Castejon G, Sepulcre MP, Roca FJ, Castellana B, Planas JV, Meseguer J. 2007. The type II interleukin 1 receptor (IL-1RII) of the bony fish gilthead seabream Sparus aurata is strongly induced after infection and tightly regulated at transcriptional and post-transcriptional levels // Mol Immunol 44. P. 2272-2780. DOI: 10.1016/j.molimm.2006.10027
40. Marana M.H., Asma M., Karami A.M., Ødegård J., Zuo S., Jaafar R., Mathiessen H., Jørgensen L.V.G., Kania P.W., Dalsgaard I., Nielsen T., Buchmann K. 2021. Whole-genome association study searching QTL for Aeromonas salmonicida resistance in rainbow trout // Sci Rep. 11(1):17857. DOI:10.1038/s41598-021-97437-7
41. Marana M.H., Dalsgaard I., Kania P.W., Mohamed A., Hannibal J., Buchmann K. 2022. Flavobacterium psychrophilum: Response of Vaccinated Large Rainbow Trout to Different Strains // Biology. 11. 1701. DOI: 10.3390/biology11121701
42. Mario C., Carlos M., Swetha M., Larenas J., Tobar J. A. 2016. Protective oral vaccination against infectious salmon anaemia virus in Salmo salar // Fish & Shellfish Immunology. V. 54. P. 54-59. DOI: 10.1016/j.fsi.2016.03.009
43. Meloni M., Candusso S., Galeotti M., Volpatti D. 2015. Preliminary study on expression of antimicrobial peptides in European sea bass (Dicentrarchus labrax) following in vivo infection with Vibrio anguillarum. A time course experiment // Fish Shellfish Immunol. V. 43. P. 82-90. DOI: 10.1016/j.fsi.2014.12.016
44. Midtlyng P. J., Reitan L. J., Speilberg L. 1996. Experimental studies on the efficacy and side-effects of intraperitoneal vaccination of Atlantic salmon (Salmo salar L.) against furunculosis // Fish Shellfish Immunol. V. 6(5). P. 335-350. DOI: 10.1006/fsim.1996.0034
45. Moen T., Baranski M., Sonesson A . K., Kjøglum S. 2009. Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population level associations between markers and trait // BMC Genomics. V. 10. P. 368. DOI: 10.1186/1471-2164-10-368
46. Moen T., Torgersen J., Santi N., Davidson W. S., Baranski M., Ødegаrd J. 2015. Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic salmon // Genetics. 200. P. 1313. DOI: 10.1534/genetics.115.175406
47. Mugue N., Terekhanova N., Afanasyev S., Krasnov A. 2019. Transcriptome sequencing of hybrid bester sturgeon: Responses to poly (I: C) in the context of comparative immunogenomics // Fish and Shellfish Immunology. No 93. P. 888-894 DOI: 10.1016/j.fsi.2019.08.038
48. Olsen M.M., Kania P.W., Heinecke R.D., Skjoedt K., Rasmussen K.J., Buchmann K. 2011. Cellular and humoral factors involved in the response of rainbow trout gills to Ichthyophthirius multifiliis infections: molecular and immunohistochemical studies // Fish Shellfish Immunol. V. 30. P. 859-869. DOI: 10.1016/j.fsi.2011.01.010
49. Ozaki A., Yoshida K., Fuji K., Kubota S., Kai W., Aoki J. 2013. Quantitative trait loci (QTL) associated with resistance to a monogenean parasite (Benedenia seriolae) in yellowtail (Seriola quinqueradiata) through genome wide analysis // PLoS One. 8: e64987. DOI: 10.1371/journal.pone.0064987
50. Palaiokostas C., Robledo D., Vesely T., Prchal M., Pokorova D., Piackova V. 2018. Mapping and sequencing of a significant quantitative trait locus affecting resistance to koi herpesvirus in common carp // G3 8. P. 3507-3513. DOI: 10.1534/g3.118.200593
51. Palti Y., Gao G., Liu S., Kent M. P., Lien S., Miller M. R. 2015. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout // Mol Ecol Resour. 15:662-672. DOI: 10.1111/1755-0998.12337
52. Ramírez R., Bakke T.A., Harris P.D. 2014. Same barcode, different biology: differential patterns of infectivity, specificity and pathogenicity in two almost identical parasite strains // International Journal for Parasitology. V. 44. P. 543-549. DOI: 10.1016/j.ijpara.2014.04.003
53. Ramírez R., Bakke T.A., Harris P.D. 2015. Population regulation in Gyrodactylus salaris – Atlantic salmon (Salmo salar L.) interactions: testing the paradigm // Parasites & Vectors. V. 8. P. 392. DOI: 10.1186/s13071-015-0981-4
54. Robledo D., Matika O., Hamilton A., Houston R.D. 2018. Genomewide association and genomic selection for resistance to amoebic gill disease in Atlantic salmon // G3. V. 8. P. 1195- 1203. DOI: 10.1534/g3.118.200075
55. Robledo D., Guitierrez A.P., Barria A., Lhorente J.P., Houston R.D., Yanez J.M. 2019. Discovery and functional annotation of quantitative trait loci affecting resistance to sealice in Atlantic salmon // Front Genet. 10. P. 56.
56. Rodriguez-Ramilo S.T., Toro M. A., Bouza C., Hermida M., Pardo B. G., Cabaleiro S. 2011. QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus) // BMC Genomics. V. 12. P. 541. DOI: 10.1186/1471-2164-12-541
57. Rodríguez-Ramilo S.T., Fernández J., Toro M. A., Bouza C., Hermida M., Fernández C., Pardo B. G., Cabaleiro S., Martínez P. 2013. Uncovering QTL for resistance and survival time to Philasterides dicentrarchi in turbot (Scophthalmus maximus) // Animal Genetics. V. 44(2). P. 149-57. DOI: 10.1111/j.1365-2052.2012.02385.x
58. Salonius K., Siderakis C., Mackinnon A.M., Griffiths S.G. 2005. Use of Arthrobacter davidanieli as a live vaccine against Renibacterium salmoninarum and Piscirickettsia salmonis in salmonids // Developmental Biology. V. 121. P. 189-197
59. Seppola M., Larsen A.N., Steiro K., Robertsen B., Jensen I. 2008. Characterisation and expression analysis of the interleukin genes, IL-1β, IL-8 and IL-10, in Atlantic cod (Gadus morhua L.) // Mol Immunol. V. 45. P. 887-897. DOI: 10.1016/j.molimm.2007.08.003
60. Severin V.I.C., El-Matbouli M. 2007. Relative quantification of immune-regulatory genes in two rainbow trout strains, Oncorhynchus mykiss, after exposure to Myxobolus cerebralis, the causative agent of whirling disease // Parasitol. Res. V. 101. P. 1019-1027. DOI: 10.1007/s00436-007-0582-z
61. Shao C., Niu Y., Rastas P., Liu Y., Xie Z., Li H., Wang L., Jiang Y., Tai S., Tian Y., Sakamoto T., Chen S. 2015. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis // DNA Res. 22(2). P. 161-170. DOI: 10.1093/dnares/dsv001
62. Skjold P.L., Sommerset I., Frost P., Villoing S. 2016. Vaccination against pancreas disease in Atlantic salmon, Salmo salar L., reduces shedding of salmonid alphavirus // Veterinary Research. V. 47. P. 78. DOI: 10.1186/s13567-016-0362-9
63. Skugor S., Glover K.A., Nilsen F., Krasnov A. 2008. Local and systemic gene expression responses of Atlantic salmon (Salmo salar L.) to infection with the salmon louse (Lepeophtheirus salmonis) // BMC Genomics. V. 9. P. 498 DOI: 10.1186/1471-2164-9-498
64. Tang Z., Guo L., Liu Y., Shao C., Chen S., Yang G. 2016. Location of Vibrio anguillarum resistance-associated trait loci in half-smooth tongue sole Cynoglossus semilaevis at its microsatellite linkage map // Chin J Oceanol Limn. 34(6). P. 1309-1319. DOI 10.1007/s00343-016-5160-8.
65. Vallejo R.L., Palti Y., Liu S., Evenhuis J.P., Gao G., Rexroad C.E. 2014. Detection of QTL in rainbow trout affecting survival when challenged with Flavobacterium psychrophilumn // Mar Biotechnol. V. 16. P. 349-360. DOI: 10.1007/s10126-013-9553-9
66. Verrier E.R., Dorson M., Mauger S., Torhy C., Ciobotaru C., Hervet C. 2013. Resistance to rhabdovirus (VHSV) in rainbow trout: Identification of a major QTL related to innate mechanisms // PLoS One. 8: e55302. DOI: 10.1371/journal.pone.0055302
67. Viele D., Kertsetter T.H., Sullivan J. 1980. Adoptive transfer of immunity against Vibrio anguillarum in rainbow trout, Salmo gairdneri Richardson, vaccinated by the immersion method // J Fish Biol. V. 17. P. 379-386. DOI: 10.1016/0145-305x(83)90031-9
68. Waltzek T.B., Kelley G.O., Alfaro M.E., Kurobe T., Davison A.J., Hedrick R.P. 2009. Phylogenetic relationships in the family Alloherpesviridae // Dis. Aquat. Org. V. 84. P. 179-194. DOI:10.3354/dao02023
69. Wang L., Fan C., Liu Y., Zhang Y., Liu S., Sun D., Deng H., Xu Y., Tian Y., Liao X., Xie M., Li W., Chen S. 2014. A genome scan for quantitative trait loci associated with Vibrio anguillarum infection resistance in Japanese flounder (Paralichthys olivaceus) by bulked segregant analysis // Mar Biotechnol. V. 16. P. 513-521. DOI: 10.1007/s10126-014-9569-9
70. Wiens G., Vallejo R.L., Leeds T.D., Palti Y., Hadidi S.S., Liu S. 2013. Genetic correlation between cold water disease resistance and spleen index in a domesticated population of rainbow trout: Identification of QTL on chromosome Omy19 // PLoS One. 8: e75749. DOI: 10.1371/journal.pone.0075749
71. Yang J., Benyamin B., McEvoy B.P., Gordon S., Henders A. K., Nyholt D. R., Madden P. A ., Heath A . C., Martin N. G., Montgomery G. W., Goddard M. E., Visscher P. M. 2010. Common SNPs explain a large proportion of the heritability for human height // Nat Genet. V. 42. P. 565- 569. DOI: 10.1038/ng.608
72. Zhang K., Han M., Liu Y., Lin X., Liu X., Zhu H., He Y., Zhang Q., Liu J. 2019. Whole-genome resequencing from bulkedsegregant analysis reveals gene set based association analyses for the Vibrio anguillarum resistance of turbot (Scophthalmus maximus) // Fish Shellfish Immunol. V. 88. P. 76-83. DOI: 10.1016/j.fsi.2019.02.041
73. Zuo S., Karami A.M., Ødegård J., Mathiessen H., Marana M.H., Jaafar R., Jørgensen LV.G., Abdu M., Kania P.W., Dalsgaard I., Nielsen T., Buchmann K. 2020. Immune gene expression and genome-wide association analysis in rainbow trout with different resistance to Yersinia ruckeri infection // Fish Shellfish Immunol. V. 106. P. 441-450. DOI: 10.1016/j.fsi.2020.07.023
Рецензия
Для цитирования:
Апаликова О.В., Киселева М.Н., Митрюшкина Д.К., Воронов К.Е., Лукина Ю.Н. Молекулярно-генетические подходы к изучению устойчивости рыб к болезням. Труды ВНИРО. 2025;199:142-156. https://doi.org/10.36038/2307-3497-2025-199-142-156. EDN: IKIBMB
For citation:
Apalikova O.V., Kiseleva M.N., Mitryushkina D.K., Voronov K.E., Lukina Yu.N. Molecular genetic approaches to the study of fish resistance to diseases. Trudy VNIRO. 2025;199:142-156. (In Russ.) https://doi.org/10.36038/2307-3497-2025-199-142-156. EDN: IKIBMB