Preview

Trudy VNIRO

Advanced search

Molecular genetic approaches to the study of fish resistance to diseases

https://doi.org/10.36038/2307-3497-2025-199-142-156

EDN: IKIBMB

Abstract

The purpose of the review is to summarize current information about viral, bacterial and parasitic fish diseases, for which molecular markers are currently being investigated for resistance. The advantages of conducting experimental studies on individuals included in genome-wide associative studies in combination with a comparative analysis of immune genes expression in affected fish, affected asymptomatic and control fish that do not exposed to the pathogen.

Methods used: comparative analysis of modern literature data, deconstruction method: careful selecting studies that reflect the main points of the data on the immune response of fish studied to date. The review results in structured data on studies of the immune response of fish to various pathogens.

Importance: aquaculture is facing an increasing number of pathogenic microorganisms affecting cultivated fish from year to year. The fishing industry needs more efficient and faster breeding methods. Traditional breeding approaches aimed at increasing the natural resistance of fish to diseases require decades, which is associated with a long time to reach sexual maturity of fish. The use of genome-wide association studies (GWAS), as well as the registration of markers such as microsatellites and single nucleotide polymorphisms (SNPs), allows for selection using marker methods. Research shows that these technical approaches can identify quantitative trait loci (QTL) and identify individuals with high natural resistance to diseases. Comparative analysis of SNPs in surviving and dead fish makes it possible to detect specific genetic markers associated with resistance and accurately determine their location in the genome. The data obtained are the basis for the selection of parental genotyped individuals for breeding generations of fish with increased resistance in a relatively short time.

About the Authors

O. V.  Apalikova
St. Petersburg branch of VNIRO (L.S. Berg «GosNIORKh»)
Russian Federation

26, Makarov Embankment, St. Petersburg, 199053 



M. N.  Kiseleva
St. Petersburg branch of VNIRO (L.S. Berg «GosNIORKh»)
Russian Federation

26, Makarov Embankment, St. Petersburg, 199053 



D. K.  Mitryushkina
St. Petersburg branch of VNIRO (L.S. Berg «GosNIORKh»)
Russian Federation

26, Makarov Embankment, St. Petersburg, 199053 



K. E.  Voronov
St. Petersburg branch of VNIRO (L.S. Berg «GosNIORKh»)
Russian Federation

26, Makarov Embankment, St. Petersburg, 199053 



Yu. N.  Lukina
St. Petersburg branch of VNIRO (L.S. Berg «GosNIORKh») ; Northern Water Problems Institute of the KarRC RAS («NWPI KarSC RAS»)
Russian Federation

26, Makarov Embankment, St. Petersburg, 199053 

50, Alexander Nevsky Ave, Petrozavodsk,185030 



References

1. Anderson E., Clouthier S., Shewmaker W., Weighall A., Lapatra S. 2010. Inactivated infectious haematopoietic necrosis virus (IHNV) vaccines // Journal of Fish Diseases. V. 31. P. 729- 745. DOI: 10.1111/j.1365-2761.2008.00960.x

2. Aslam M.L., Robledo D., Krasnov A., Moghadam H.K., Hillestad B., Houston R.D., Baranski M., Boison S., Robinson N.A. 2020. Quantitative trait loci and genes associated with salmonid alphavirus load in Atlantic salmon: implications for pancreas disease resistance and tolerance // Sci Rep. 10(10393):1-15. DOI:10.1038/s41598-020-67405-8.

3. Bakke T.A., Soleng A., Harris P.D. 1999. The susceptibility of Atlantic salmon (Salmo salar L.) × brown trout (Salmo trutta L.) hybrids to Gyrodactylus salaris Malmberg and Gyrodactylus derjavini Mikailov // Parasitology. V. 119. P. 467-481. DOI: 10.1017/s0031182099004990

4. Bakke T. A., Harris P. D., Cable J. 2002. Host specificity dynamics: observations on gyrodactylid monogeneans // Int J Parasitol. V. 32. P. 281-308. DOI: 10.1016/s0020-7519(01)00331-9

5. Baerwald M.R., Petersen J.L., Hedrick R.P., Schisler G., May B. 2011. A major effect of quantitative trait locus for whirling disease resistance identified in rainbow trout (Oncorhynchus mykiss) // Heredity. V. 106. P. 920-926. DOI:10.1038/hdy.2010.137.

6. Barria A., Christensen K.A., Yoshida G.M., Correa K., Jedlicki A., Lhorente J.P. 2018. Genomic predictions and genomewide association study of resistance against Piscirickettsia salmonis in Coho salmon (Oncorhynchus kisutch) using ddRAD sequencing // G3. P. 1183-1194. DOI: 10.1534/g3.118.200053.

7. Barria A., Marin-Nahuelpi R., Caceres P., Lopez M.E., Bassini L.N., Lhorente J.P. 2019. Single step genome wide association study for resistance to Piscirickettsia salmonis in rainbow trout (Oncorhynchus mykiss). // G3 9. P. 3833-3841. DOI: 10.1534/g3.119.400204

8. Bernatchez L., Landry C. 2003. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? // Evol. Biol. V. 16 P. 363-377. DOI: 10.1046/j.1420-9101.2003.00531.x

9. Braden L. M., Koop B. F., Jones S. R.M. 2015. Signatures of resistance to Lepeophtheirus salmonis include a TH2-type response at the louse-salmon interface // Dev Comp Immunol. No 48. P. 178-191. DOI: 10.1016/j.dci.2014.09.015

10. Boison S. A ., Gjerde B., Hillestad B., Makvandi-Nejad S., Moghadam H. K. 2019. Genomic and Transcriptomic Analysis of Amoebic Gill Disease Resistance in Atlantic Salmon (Salmo salar L.) // Front Genet. DOI: 10.3389/fgene.2019.00068

11. Caipang C. M.A., Hynes N., Puangkaew J., Brinchmann M. F., Kiron V. 2008. Intraperitoneal vaccination of Atlantic cod, Gadus morhua with heat-killed Listonella anguillarum enhances serum antibacterial activity and expression of immune response genes // Fish Shellfish Immunol. No 24: P. 314-322. DOI: 10.1016/j.fsi.2007.11.018

12. Chistiakov D.A., Kabanov F.V., Troepolskaya O.D., Tischenko M.M. 2010. A variant of the interleukin –1β gene in European sea bass, Dicentrarchus labrax L. , is associated with increased resistance against Vibrio anguillarum // J Fish Dis. V. 33. P. 759-767. DOI: 10.1111/j.1365-2761.2010.01182.x

13. Correa K., Lhorente J.P., Lopez M.E., Bassini L., Naswa S., Deeb N. 2015. Genome-wide association analyses reveals two loci associated resistance against Piscirickettsia salmonis in two Atlantic salmon (Salmo salar L.) chromosomes // BMC Genomics. V. 16. P. 854. DOI: 10.1186/s12864-015-2038-7

14. Dalvin S., Jørgensen L.V.G., Kania P.W., Grotmol S., Buchmann K., Øvergård A.-C. 2020. Rainbow trout Oncorhynchus mykiss responses to salmon louse Lepeophtheirus salmonis: from copepodid to adult stage // Fish Shellfish Immunol. No 103. P. 200-210

15. Dettleff P., Bravo C., Patel A., Martinez V. 2015. Patterns of Piscirickettsia salmonis load in susceptible and resistant families of Salmo salar // Fish Shellfish Immunol. No 45. P. 67-71. DOI: 10.1016/j.fsi.2015.03039

16. Dong X., Li J., He J., Liu W., Jiang L., Ye Y., Wu C. 2016. Antiinfective mannose receptor immune mechanism in large yellow croaker (Larimichthys crocea). // Fish Shellfish Immunol. No 54, C. 257-65. DOI: 10.1016/j.fsi.2016.04.006.

17. Dong X., Shilin M.B., Apalikova O.V., Lukina J.N., Golotin V.A., Li J., Zhang J. 2021. The Anti-Infective Immune Mechanism of the CCL2 and CCL3 Chemokines in the Large Yellow Croaker (Larimichthys сrocea) // Journal of Аpplied Ichthiology. DOI: 10.1111/jai.14214.

18. Du M., Chen S.L., Liu Y., Yang J.F. 2011. MHC polymorphism and disease resistance to Vibrio anguillarum in 8 families of half-smooth tongue sole (Cynoglossus semilaevis) // BMS Genetics. V. 12. P. 78. DOI: 10.1186/1471-2156-12-78

19. Fraslin C., Dechamp N., Bernard M., Krieg F., Hervet C., Guyomard R., Quillet E. 2018. Quantitative trait loci for resistance to Flavobacterium psychrophilum in rainbow trout: effect of the mode of infection and evidence of epistatic interactions // Genet. Sel. Evol. 50 (60), P. 1-16. DOI: 10.1186/s12711-018-0431-9.

20. Fraslin C., Quillet E., Rochat T., Dechamp N., Bernadet J.-F., Collet B., Lallias D., Boudinot P. 2020. Combining multiple approaches and models to dissect the genetic architecture of resistance to infection in fish // Front Genet. 11(677) P. 1-20. DOI: 10.3389/fgene.2020.00677

21. Gao Y., Pei C., Sun X., Zhang C., Li L., Kong X. 2018. Novel subunit vaccine based on grass carp reovirus VP35 protein provides protective immunity against grass carp hemorrhagic disease // Fish & Shellfish Immunology. V. 75. P. 91-98. DOI: 10.1016/j.fsi.2018.01.050

22. Gharbi K., Glover K.A., Stone L.C., MacDonald E.S., Matthews L., Grimholt U. 2009. Genetic dissection of MHC-associated susceptibility to Lepeophtheirus salmonis in Atlantic salmon // BMC Genet. 10. P. 20. DOI: 10.1186/1471-2156-1020

23. Gilbey J., Verspoor E., Mo T.A., Sterud E., Olstad K., Hytterød S. 2006. Identification of genetic markers associated with Gyrodactylus salaris resistance in Atlantic salmon Salmo salar // Dis Aquat Org. V. 71 P. 119-129. DOI: 10.3354/dao071119

24. Gjedrem T., Baranski M. 2009. Selective breeding in aquaculture: an introduction // Methods and Technologies in Fish Biology and Fisheries. Springer Dordrecht. V. 10. P. 221. DOI: 10.1007/978-90-481-2773-3

25. Gjedrem T., Gjøen H.M. 1995. Genetic variation in susceptibility of Atlantic salmon, Salmo salar L., to furunculosis, BKD and cold water vibriosis // Aquacult Res. V. 26(2). P. 129-134. DOI: 10.1111/j.1365-2109.1995.tb00892.x

26. Gjøen H. M., Refstie T., Ulla O., Gjerde B. 1997. Genetic correlations between survival of Atlantic salmon in challenge and field tests // Aquaculture. V. 158(3). P. 277- 288. DOI: 10.1016/S0044-8486(97)00203-2

27. Grimholt U., Larsen S., Nordmo R., Midtlyng P., Kjoeglum S., Storset A. 2003. MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar) facing pathogens with single expressed major histocompatibility class I and class II loci // Immunogenetics. V. 55. P. 210-219. DOI: 10.1007/s00251-003-0567-8

28. Haramoto E., KItajima M., Katayama H., Ohgaki S. 2007. Detection of koi herpesvirus DNA in river water in Japan. // Fish Dis. V. 30. P. 59-61. DOI: 10.1111/j.1365-2761.2007.00778.x

29. He J., Liu H., Yang J., Dong X., Wu C. 2016. Abundant members of Scavenger receptors family and their identification, characterization and expression against Vibrio alginolyticus infection in juvenile Larimichthys crocea // Fish and shellfish immunology. V. 50. P. 297-309. DOI: 10.1016/j.fsi.2016.02.009

30. Hedrick R.P., McDowell T.S., Marty G.D., Fosgate G.T., Mukkatira K., Myklebust K. 2003. Susceptibility of two strains of rainbow trout (one with suspected resistance to whirling disease) to Myxobolus cerebralis infection // Dis Aquat Org. V. 55. P. 37-44. DOI: 10.3354/dao055037

31. Holm H., Santi N., Kjøglum S., Perisic N., Skugor S., Evensen Ø. 2015. Difference in skin immune responses to infection with salmon louse (Lepeophtheirus salmonis) in Atlantic salmon (Salmo salar L.) of families selected for resistance and susceptibility // Fish Shellfish Immunol. No 42. P. 384- 394. DOI: 10.1016/j.fsi.2014.10.038

32. Houston R. D., Haley C. S., Hamilton A., Guy D. R., Tinch A. E., Taggart J. B. 2008. Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar) // Genetics. V. 178. P. 1109-1115. DOI: 10.1534/genetics.107.082974

33. Jaafar R., Ødegård J., Mathiessen H., Karami A.M., Marana M.H., Jørgensen L. V.G., Zuo S., Nielsen T., Buchmann K. 2020. Quantitative trait loci (QTL) associated with resistance of rainbow trout Oncorhynchus mykiss against the parasitic ciliate Ichthyophthirius multifiliis // J Fish Dis. 43(12). P. 1591-1602. DOI: 10.1111/jfd.13264

34. Karami A.M., Bani A., Pourkazemi M., Ghasemi M., Kania P.W., Buchmann K. 2018. Comparative susceptibilities and immune reactions of wild and cultured populations of Caspian trout Salmo trutta caspius to VHS // Dis Aquat Org. V. 128(3) P. 187-201. DOI: 10.3354/dao03231

35. Karami A.M., Mathiessen H., Ødegård J., Marana M.H., Jaafar R., Jørgensen L.V.G., Zuo S., Dalsgaard I., Nielsen T., Kania P.W., Buchmann K. 2020. Detecting a major QTL for Vibrio anguillarum resistance in rainbow trout // Front Genet. 11:607558. DOI: 10.3389/fgene.2020.607558

36. Khansari A.R., Balasch J.C., Vallejos-Vidal E., Teles M., FierroCastro C., Tort L., Reyes-Lуpez F.E. 2019. Comparative study of stress and immune-related transcript outcomes triggered by Vibrio anguillarum bacterin and air exposure stress in liver and spleen of gilthead seabream (Sparus aurata), zebrafish (Danio rerio) and rainbow trout (Oncorhynchus mykiss) // Fish Shellfish Immunol. No 86. P. 436-448. DOI: 10.1016/j.fsi.2018.11.063

37. Langefors A., Lohm J., Grahn M., Andersen O., Schantz V.T. 2001. Association between major histocompatibility complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon // Proc Biol Sci. 268(1466) P. 479-485. DOI: 10.1098/rspb.2000.1378.

38. Liu S., Vallejo R.L., Evenhuis J.P., Martin K.E., Hamilton A., Gao G., Palti Y. 2018. Retrospective evaluation of marker-assisted selection for resistance to bacterial cold water disease in three generations of a commercial rainbow trout breeding population // Front Genet. 9. P. 286. DOI: 10.3389/fgene.2018.00286

39. Lopez-Castejon G, Sepulcre MP, Roca FJ, Castellana B, Planas JV, Meseguer J. 2007. The type II interleukin 1 receptor (IL-1RII) of the bony fish gilthead seabream Sparus aurata is strongly induced after infection and tightly regulated at transcriptional and post-transcriptional levels // Mol Immunol 44. P. 2272-2780. DOI: 10.1016/j.molimm.2006.10027

40. Marana M.H., Asma M., Karami A.M., Ødegård J., Zuo S., Jaafar R., Mathiessen H., Jørgensen L.V.G., Kania P.W., Dalsgaard I., Nielsen T., Buchmann K. 2021. Whole-genome association study searching QTL for Aeromonas salmonicida resistance in rainbow trout // Sci Rep. 11(1):17857. DOI:10.1038/s41598-021-97437-7

41. Marana M.H., Dalsgaard I., Kania P.W., Mohamed A., Hannibal J., Buchmann K. 2022. Flavobacterium psychrophilum: Response of Vaccinated Large Rainbow Trout to Different Strains // Biology. 11. 1701. DOI: 10.3390/biology11121701

42. Mario C., Carlos M., Swetha M., Larenas J., Tobar J. A. 2016. Protective oral vaccination against infectious salmon anaemia virus in Salmo salar // Fish & Shellfish Immunology. V. 54. P. 54-59. DOI: 10.1016/j.fsi.2016.03.009

43. Meloni M., Candusso S., Galeotti M., Volpatti D. 2015. Preliminary study on expression of antimicrobial peptides in European sea bass (Dicentrarchus labrax) following in vivo infection with Vibrio anguillarum. A time course experiment // Fish Shellfish Immunol. V. 43. P. 82-90. DOI: 10.1016/j.fsi.2014.12.016

44. Midtlyng P. J., Reitan L. J., Speilberg L. 1996. Experimental studies on the efficacy and side-effects of intraperitoneal vaccination of Atlantic salmon (Salmo salar L.) against furunculosis // Fish Shellfish Immunol. V. 6(5). P. 335-350. DOI: 10.1006/fsim.1996.0034

45. Moen T., Baranski M., Sonesson A . K., Kjøglum S. 2009. Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population level associations between markers and trait // BMC Genomics. V. 10. P. 368. DOI: 10.1186/1471-2164-10-368

46. Moen T., Torgersen J., Santi N., Davidson W. S., Baranski M., Ødegаrd J. 2015. Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic salmon // Genetics. 200. P. 1313. DOI: 10.1534/genetics.115.175406

47. Mugue N., Terekhanova N., Afanasyev S., Krasnov A. 2019. Transcriptome sequencing of hybrid bester sturgeon: Responses to poly (I: C) in the context of comparative immunogenomics // Fish and Shellfish Immunology. No 93. P. 888-894 DOI: 10.1016/j.fsi.2019.08.038

48. Olsen M.M., Kania P.W., Heinecke R.D., Skjoedt K., Rasmussen K.J., Buchmann K. 2011. Cellular and humoral factors involved in the response of rainbow trout gills to Ichthyophthirius multifiliis infections: molecular and immunohistochemical studies // Fish Shellfish Immunol. V. 30. P. 859-869. DOI: 10.1016/j.fsi.2011.01.010

49. Ozaki A., Yoshida K., Fuji K., Kubota S., Kai W., Aoki J. 2013. Quantitative trait loci (QTL) associated with resistance to a monogenean parasite (Benedenia seriolae) in yellowtail (Seriola quinqueradiata) through genome wide analysis // PLoS One. 8: e64987. DOI: 10.1371/journal.pone.0064987

50. Palaiokostas C., Robledo D., Vesely T., Prchal M., Pokorova D., Piackova V. 2018. Mapping and sequencing of a significant quantitative trait locus affecting resistance to koi herpesvirus in common carp // G3 8. P. 3507-3513. DOI: 10.1534/g3.118.200593

51. Palti Y., Gao G., Liu S., Kent M. P., Lien S., Miller M. R. 2015. The development and characterization of a 57K single nucleotide polymorphism array for rainbow trout // Mol Ecol Resour. 15:662-672. DOI: 10.1111/1755-0998.12337

52. Ramírez R., Bakke T.A., Harris P.D. 2014. Same barcode, different biology: differential patterns of infectivity, specificity and pathogenicity in two almost identical parasite strains // International Journal for Parasitology. V. 44. P. 543-549. DOI: 10.1016/j.ijpara.2014.04.003

53. Ramírez R., Bakke T.A., Harris P.D. 2015. Population regulation in Gyrodactylus salaris – Atlantic salmon (Salmo salar L.) interactions: testing the paradigm // Parasites & Vectors. V. 8. P. 392. DOI: 10.1186/s13071-015-0981-4

54. Robledo D., Matika O., Hamilton A., Houston R.D. 2018. Genomewide association and genomic selection for resistance to amoebic gill disease in Atlantic salmon // G3. V. 8. P. 1195- 1203. DOI: 10.1534/g3.118.200075

55. Robledo D., Guitierrez A.P., Barria A., Lhorente J.P., Houston R.D., Yanez J.M. 2019. Discovery and functional annotation of quantitative trait loci affecting resistance to sealice in Atlantic salmon // Front Genet. 10. P. 56.

56. Rodriguez-Ramilo S.T., Toro M. A., Bouza C., Hermida M., Pardo B. G., Cabaleiro S. 2011. QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus) // BMC Genomics. V. 12. P. 541. DOI: 10.1186/1471-2164-12-541

57. Rodríguez-Ramilo S.T., Fernández J., Toro M. A., Bouza C., Hermida M., Fernández C., Pardo B. G., Cabaleiro S., Martínez P. 2013. Uncovering QTL for resistance and survival time to Philasterides dicentrarchi in turbot (Scophthalmus maximus) // Animal Genetics. V. 44(2). P. 149-57. DOI: 10.1111/j.1365-2052.2012.02385.x

58. Salonius K., Siderakis C., Mackinnon A.M., Griffiths S.G. 2005. Use of Arthrobacter davidanieli as a live vaccine against Renibacterium salmoninarum and Piscirickettsia salmonis in salmonids // Developmental Biology. V. 121. P. 189-197

59. Seppola M., Larsen A.N., Steiro K., Robertsen B., Jensen I. 2008. Characterisation and expression analysis of the interleukin genes, IL-1β, IL-8 and IL-10, in Atlantic cod (Gadus morhua L.) // Mol Immunol. V. 45. P. 887-897. DOI: 10.1016/j.molimm.2007.08.003

60. Severin V.I.C., El-Matbouli M. 2007. Relative quantification of immune-regulatory genes in two rainbow trout strains, Oncorhynchus mykiss, after exposure to Myxobolus cerebralis, the causative agent of whirling disease // Parasitol. Res. V. 101. P. 1019-1027. DOI: 10.1007/s00436-007-0582-z

61. Shao C., Niu Y., Rastas P., Liu Y., Xie Z., Li H., Wang L., Jiang Y., Tai S., Tian Y., Sakamoto T., Chen S. 2015. Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis // DNA Res. 22(2). P. 161-170. DOI: 10.1093/dnares/dsv001

62. Skjold P.L., Sommerset I., Frost P., Villoing S. 2016. Vaccination against pancreas disease in Atlantic salmon, Salmo salar L., reduces shedding of salmonid alphavirus // Veterinary Research. V. 47. P. 78. DOI: 10.1186/s13567-016-0362-9

63. Skugor S., Glover K.A., Nilsen F., Krasnov A. 2008. Local and systemic gene expression responses of Atlantic salmon (Salmo salar L.) to infection with the salmon louse (Lepeophtheirus salmonis) // BMC Genomics. V. 9. P. 498 DOI: 10.1186/1471-2164-9-498

64. Tang Z., Guo L., Liu Y., Shao C., Chen S., Yang G. 2016. Location of Vibrio anguillarum resistance-associated trait loci in half-smooth tongue sole Cynoglossus semilaevis at its microsatellite linkage map // Chin J Oceanol Limn. 34(6). P. 1309-1319. DOI 10.1007/s00343-016-5160-8.

65. Vallejo R.L., Palti Y., Liu S., Evenhuis J.P., Gao G., Rexroad C.E. 2014. Detection of QTL in rainbow trout affecting survival when challenged with Flavobacterium psychrophilumn // Mar Biotechnol. V. 16. P. 349-360. DOI: 10.1007/s10126-013-9553-9

66. Verrier E.R., Dorson M., Mauger S., Torhy C., Ciobotaru C., Hervet C. 2013. Resistance to rhabdovirus (VHSV) in rainbow trout: Identification of a major QTL related to innate mechanisms // PLoS One. 8: e55302. DOI: 10.1371/journal.pone.0055302

67. Viele D., Kertsetter T.H., Sullivan J. 1980. Adoptive transfer of immunity against Vibrio anguillarum in rainbow trout, Salmo gairdneri Richardson, vaccinated by the immersion method // J Fish Biol. V. 17. P. 379-386. DOI: 10.1016/0145-305x(83)90031-9

68. Waltzek T.B., Kelley G.O., Alfaro M.E., Kurobe T., Davison A.J., Hedrick R.P. 2009. Phylogenetic relationships in the family Alloherpesviridae // Dis. Aquat. Org. V. 84. P. 179-194. DOI:10.3354/dao02023

69. Wang L., Fan C., Liu Y., Zhang Y., Liu S., Sun D., Deng H., Xu Y., Tian Y., Liao X., Xie M., Li W., Chen S. 2014. A genome scan for quantitative trait loci associated with Vibrio anguillarum infection resistance in Japanese flounder (Paralichthys olivaceus) by bulked segregant analysis // Mar Biotechnol. V. 16. P. 513-521. DOI: 10.1007/s10126-014-9569-9

70. Wiens G., Vallejo R.L., Leeds T.D., Palti Y., Hadidi S.S., Liu S. 2013. Genetic correlation between cold water disease resistance and spleen index in a domesticated population of rainbow trout: Identification of QTL on chromosome Omy19 // PLoS One. 8: e75749. DOI: 10.1371/journal.pone.0075749

71. Yang J., Benyamin B., McEvoy B.P., Gordon S., Henders A. K., Nyholt D. R., Madden P. A ., Heath A . C., Martin N. G., Montgomery G. W., Goddard M. E., Visscher P. M. 2010. Common SNPs explain a large proportion of the heritability for human height // Nat Genet. V. 42. P. 565- 569. DOI: 10.1038/ng.608

72. Zhang K., Han M., Liu Y., Lin X., Liu X., Zhu H., He Y., Zhang Q., Liu J. 2019. Whole-genome resequencing from bulkedsegregant analysis reveals gene set based association analyses for the Vibrio anguillarum resistance of turbot (Scophthalmus maximus) // Fish Shellfish Immunol. V. 88. P. 76-83. DOI: 10.1016/j.fsi.2019.02.041

73. Zuo S., Karami A.M., Ødegård J., Mathiessen H., Marana M.H., Jaafar R., Jørgensen LV.G., Abdu M., Kania P.W., Dalsgaard I., Nielsen T., Buchmann K. 2020. Immune gene expression and genome-wide association analysis in rainbow trout with different resistance to Yersinia ruckeri infection // Fish Shellfish Immunol. V. 106. P. 441-450. DOI: 10.1016/j.fsi.2020.07.023


Review

For citations:


Apalikova O.V., Kiseleva M.N.,  Mitryushkina D.K., Voronov K.E., Lukina Yu.N. Molecular genetic approaches to the study of fish resistance to diseases. Trudy VNIRO. 2025;199:142-156. (In Russ.) https://doi.org/10.36038/2307-3497-2025-199-142-156. EDN: IKIBMB



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-3497 (Print)

По вопросу подписки и приобретения номеров журналов просьба обращаться в ООО «Агентство «КНИГА-СЕРВИС» (т.:  495 – 680-90-88;  E-mail: public@akc.ru  Web: www.akc.ru).