Cadmium content in commercial fishes of the Barents Sea (based on long-term data)
https://doi.org/10.36038/2307-3497-2024-198-87-99
Abstract
The aim: to study the amount of cadmium found in muscle tissue and liver of the main commercial fish species of the Barents Sea.
Research material was comprised of fish samples collected during the expeditions of N.M. Knipovich «PINRO» in the Barents Sea in 2009–2021. The study was based on muscle and liver samples taken from cod, haddock, long rough dab, Greenland halibut, plaice and spotted catfish. Over 1500 samples were analyzed.
Novelty: for the first time a comparative analysis of Cd concentration in six commercial fish species of the Barents Sea was run and background readings were provided using such a big amount of data.
Methods used: the content of Cd in fish samples was measured using Shimadzu (Japan) Atomic Absorption Spectrophotometer (AAS). Statistical data processing and charting were done using MS Excel and application software package of Statistica 13.
The results show that the average content of Cd in muscle and liver of the examined fish did not exceed the established sanitary standard for the maximal concentrations of 0.2 and 0.7 mg/kg of wet weight, respectively. No evidence of anthropogenic contamination of the studied species by cadmium was found. The cadmium concentrations in liver was 11–17 times higher than in muscle. The total content of Cd in muscle and liver demonstrated a high variability (dispersion). The main reason for this variability is differences in the diet and feeding habits of the fishes. The cadmium content in muscle tissues is species-specific. The liver is capable of removing Cd from the body actively. The study also found other factors influencing the cadmium concentrations, such as taxonomic affiliation and regional peculiarities (particularly, habitats and fishing areas).
Practical significance: the acquired results were used to determine whether the commercial fishes meet the sanitary standards used in Russia.
About the Authors
M. A. NovikovRussian Federation
6, Academician Knipovich St., Murmansk, 183038, Russia
E. A. Gorbacheva
Russian Federation
6, Academician Knipovich St., Murmansk, 183038, Russia
M. N. Kharlamova
Russian Federation
9, Kommuny St., Murmansk, 183038, Russia
References
1. Boytsova V.D., Lebed N.I., Ponomarenko V.P., Ponomarenko I.Ya., Tereshchenko V.V., Tretyak V.L., Shevelev M.S., Yaragina N.A. 2003. Cod of the Barents Sea: biology and fishery. 2nd ed. Murmansk: PINRO Publish. 296 p. (In Russ.).
2. Vasil’kov G.V. Grishchenko L.I., Engashev V.G. 1989 Fish diseases. Handbook / V.S. Osetrov. ed. Moscow: Agropromizdat. 288 p. (In Russ.).
3. Vetrov V.A., Kornakova E.F., Kuznetsova A.I., Korobeynikova L.G. 1989. Metal content in Baikal fish // Problems of environmental monitoring and modeling of ecosystems. V. 12. P. 88–100. (In Russ.).
4. Gashkina N.A., Moiseenko T.I., Shuman L.A., Koroleva I.M. The role of trace elements in the adaptation of fish metabolism under reduced pollution: a case study of the subarctic Lake Imandra // Geochemistry International. 2022. V. 60. № 2. С. 154–169. DOI: 10.1134/S0016702922020057 (In Russ.).
5. Diagnostic analysis of the state of the environment in the Arctic zone of the Russian Federation. 2011 / Responsible ed. B.A. Morgunov. Moscow: Nauchnyy mir. 1260 p. (In Russ.).
6. Dolgov A.V. 2016. Composition, formation and trophic structure of the Barents Sea fish communities. Murmansk: PINRO Publish. 336 pp. (In Russ.).
7. Study of ecosystems of fishery water reservoirs, collection and processing of data on aquatic biological resources, techniques and technology for their extraction and processing. 2004. Instructions and guidelines for the collection and processing of data on the seas of the European North and the North Atlantic. Moscow: VNIRO Publish. 299 p. (In Russ.).
8. Kovekovdova L.T., Kiku D.P., Kasyanenko I.S. 2016. Monitoring of water environment and food safety of commercial objects in the Far East fishery basin (toxic elements) // Marine biological research: achievements and prospects: 3-h t. Mat. All-russ. scint.-pract. conf. with intern. participation, to the 145th anniversary of the Sevastopol Biological Station. Sevastopol: EHKOSI-Gidrofizika Publush. V. 3. P. 111–114. (In Russ.).
9. Kryuchkov V.N., Butaeva N.B., Omarova Kh.G., Dubovskaya A.V. 2018. The influence of experimental cadmium intoxication on the morphofunctional parameters of fish kidneys // Vestnik DSU. Series 1. Natural Sciences. V. 33. Iss. 4. P. 121–128. (In Russ.).
10. Metelev V. V., Kanaev A. I., Dzasokhova N. G. 1971. Aquatic toxicology. Moscow: Kolos. 247 p. (In Russ.).
11. Moiseenko T.I. 2015. Impact of geochemical factors of aquatic environment on the metal bioaccumulation in fish // Geochemistry International. Т. 53. № 3. С. 213–223. DOI: 10.1134/S001670291503009X (In Russ.).
12. Moiseenko T. I., Gashkina N. A. 2018. Biogeochemistry of cadmium: anthropogenic dispersion, bioaccumulation, and ecotoxicity // Geochemistry International. V. 56. № 8. С. 798–811. DOI: 10.1134/S0016702918080062 (In Russ.).
13. Novikov M. A., Gorbacheva E. A., Lapteva A. M. 2021. Arsenic content in commercial fish of the Barents Sea (according to long-term data) // Izvestiya TINRO. V. 201, № 4. P. 833–844. DOI: 10.26428/1606-9919-2021-201-833-844. (In Russ.).
14. Novikov M.A., Gorbacheva E.A., Kharlamova M.N. 2023. Mercury content in commercial fishes of the Barents Sea (based on long-term data) // Trudy VNIRO. V. 191. P. 112–123. DOI: 10.36038/2307-3497-2023-191-112-1 (In Russ.).
15. Novikov M.A. 2017. On the background values of heavy metals in bottom sediments of the Barents Sea // Vestnik of MSTU. V. 20, No. 1–2. P. 280–288. DOI: 10.21443/1560-9278-2017-20-1/2-280-288 (In Russ.).
16. Novikov M.A., Draganov D.M. 2017. Complex methodological approach to estimation of background levels of microelements content in water masses of the Barents Sea (Cd, Co, Cu and Ni) // Vestnik KRAUNC. Nauki o Zemle (Geosciences). Iss. 34, No. 2. P. 37–48. (In Russ.).
17. Filenko O. F., Mikheeva I. V. 2007. Fundamentals of aquatic toxicology. Moscow: Kolos. 144 p. (In Russ.).
18. Khristoforova N.K. 1989. Bioindication and monitoring of sea water pollution with heavy metals. Lenindrad: Nauka. 192 p. (in Russ.).
19. Chibisova N.V., Dolgan’ E.K. 1998. Environmental chemistry: Textbook. Kaliningrad: KSU. 113 p. (In Russ.).
20. AMAP. 2005. AMAP Assessment 2002: Heavy Metals in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway. xvi + 265 pp. (first published as electronic document in 2004).
21. Ayyat M.S., Mahmoud H.K., El-Hais A.E.-A.M., Abd El-Latif K.M. 2017. The role of some feed additives in fish fed on diets contaminated with cadmium // Environ. Sci. Pollut. Res. V. 24. P. 23636–23645. DOI: 10.1007/s11356-017-9986-1
22. Bank M. S., Frantzen S., Duinker A., Amouroux D., Tessier E., Nedreaas K., Maage A., Nilsen B.M. 2021. Rapid Temporal Decline of Mercury in Greenland Halibut (Reinhardtius hippoglossoides) // Environ. Pollut. V. 289. Is. 117843. DOI: 10.1016/j.envpol.2021.117843
23. Berntssen M. H.G., Aspholm O. Ø., Hylland K., Wendelaar Bonga S.E., Lundebye A.-K. 2001. Tissue metallothionein, apoptosis and cell proliferation responses in Atlantic salmon (Salmo salar L.) parr fed elevated dietary cadmium // Comp. Biochem. Physiol. Toxicol. Pharmacol. V. 128. P. 299–310. DOI: 10.1016/S1532-0456(00)00204-0
24. Bjerregaard P., Andersen C., Andersen O. 2014. Ecotoxicology of metals — sources, transport, and effects on the ecosystem // Handbook on the Toxicology of Metals / Nordberg G.F., Fowler B.A., Nordberg M. eds. Elsevier Science, Amsterdam. P. 425–459.
25. Dehn L.-A., Follmann E.H. Thomas D.L., Sheffield G.G., Rosa Ch., Duffy L.K., O’Hara T.M. 2006. Trophic relationships in an Arctic food web and implications for trace metal transfer // Sci. Total Environ. V. 362 (1–3). P. 103–123. DOI: 10.1016/j.scitotenv.2005.11.012
26. Dietz R., Riget F., Johansen P. 1996. Lead, cadmium, mercury and selenium in Greenland marine animals // Sci. Total Environ. V.186. P. 67–93.
27. Ervik H., Finne T.E., Jenssen B.M. 2018. Toxic and essential elements in seafood from Mausund, Norway // Environ. Sci. Pollut. Res. P. 1–9.
28. Fernandes D., Bebianno M.J., Porte C. 2008. Hepatic levels of metal and metallothioneins in two commercial fish species of the Northern Iberian shelf // Sci. Total Environ. V. 391. P. 159–167. DOI: 10.1016/j.scitotenv.2007.10.057
29. Fernandes D., Porte C., Bebianno M.J. 2007. Chemical residues and biochemical responses in wild and cultured European sea bass (Dicentrarchus labrax L.) // Environ. Res. V. 103. P. 247–256. DOI: 10.1016/j.envres.2006.05.015
30. Gashkina N. A., Moiseenko T. I., Kudryavtseva L. P. 2020. Fish response of metal bioaccumulation to reduced toxic load on long-term contaminated lake Imandra // Ecotoxicology and Environmental Safety. V.191: 110205.
31. Heath A.G. 2002. Water Pollution and Fish Physiology. Lewis Publishers. 506 p.
32. Hinton D. E., Baumann P. C., Gardner G. C., Hawkins W. E., Hendricks J. D., Murchelano R. A., Okihiro M. S. 2017. Histopathologic biomarkers // Biomarkers: Biochemical, Physiological and Histological Markers of Anthropogenic Stress / Huggett R.J., Kimerly R.A. et al. eds. Boca Raton, London, N.Y.: CRC Press. 155–210 p.
33. Hodson P. V. 1988. The effect of metabolism on uptake, disposition and toxicity in fish // Aquatic Toxicology. V. 11. P. 3–18.
34. Julshamn K., Lundebye A.K., Heggstad K., Berntssen M.H., Bøe B. 2004. Norwegian monitoring programme on the inorganic and organic contaminants in fish caught in the Barents Sea, Norwegian Sea and North Sea, 1994–2001 // Food Additives and Contaminants. V. 21. P. 365–376.
35. Julshamn K., Frantzen S., Valdersnes S., Nilsen B., Maage A., Nedreaas K. 2011. Concentrations of mercury, arsenic, cadmium and lead in Greenland halibut (Reinhardtius hippoglossoides) caught off the coast of northern Norway // Marine Biology Research. V. 7 (8). P. 733–745. DOI: 10.1080/17451000.2011.594893
36. Karl H., Kammann U., Aust M.-O., Manthey-Karl M., Lüth A., Kanisch G. 2016. Large scale distribution of dioxins, PCBs, heavy metals, PAH-metabolites and radionuclides in cod (Gadus morhua) from the North Atlantic and its adjacent seas // Chemosphere. V. 149. P. 294–303. DOI: 10.1016/j.chemosphere.2016.01.052
37. Kim S.-G., Eom K.-H., Kim S.-S., Jin H.-G., Kang J.-C. 2006. Kinetics of Cd accumulation and elimination in tissues of juvenile rockfish (Sebastes schlegeli) exposed to dietary Cd // Mar. Environ. Res. V. 62. P. 327–340. DOI: 10.1016/j.marenvres.2006.05.001
38. Kim S.-G., Jee J.-H., Kang J.-C. 2004. Cadmium accumulation and elimination in tissues of juvenile olive flounder, Paralichthys olivaceus after sub-chronic cadmium exposure // Environ. Pollut. V. 127. P. 117–123. DOI: 10.1016/S0269-7491(03)00254-9
39. Le Croizier G., Lacroix C., Artigaud S., Le Floch S., Raffray J. Penicaud V. Coquillé V., Autiera J., Rouget M.-L., Le Bayond N., Lae R., De Moraisa L.T. 2018. Significance of metallothioneins in differential cadmium accumulation kinetics between two marine fish species // Environ. Pollut. V. 236. P. 462–476. DOI: 10.1016/j.envpol.2018.01.002
40. Liu Y., Chen Q., Li Y., Bi L., Jin L., Peng R. 2022. Toxic Effects of Cadmium on Fish // Toxics. V. 10, 622. 19 p. DOI: 10.3390/toxics10100622
41. Mackenzie Martyniuk A.C., Couture P., Tran L., Beaupré L., Urien N., Power M. 2020. A seasonal comparison of trace metal concentrations in the tissues of Arctic charr (Salvelinus alpinus) in Northern Québec, Canada // Ecotoxicology. V. 29. P. 1327–1346. DOI: 10.1007/s10646-020-02248-7
42. McGeer J.C., Niyogi S., Scott Smith D. 2011. Cadmium // Fish Physiology, Homeostasis and Toxicology of Non-essential Metals. Volume 31B / Wood C.M., Farrell A.P., Brauner C.J. eds. London: Academic Press. P. 125–184.
43. Riget F., Dietz R., Johansen P. 1997. Zinc, cadmium, mercury and selenium in Greenland fish // Bioscience. V. 48. 29 p.
44. Riget F., Dietz R., Johansen P., Asmund G. 2000. Lead, cadmium, mercury and selenium in Greenland marine biota and sediments during AMAP phase 1 // Science of the Total Environment. V.245. P. 3–14.
45. Sierra-Marquez L., Espinosa-Araujo J., Atencio-Garcia V., OliveroVerbel J. 2019. Effects of cadmium exposure on sperm and larvae of the neotropical fish Prochilodus magdalenae // Comparative Biochem. and Physiol., Part C.V. 225:108577. DOI: 10.1016/j.cbpc.2019.108577.
46. Singhal R.N., Jain M. 1997. Cadmium-induced changes in the histology of kidneys in common carp, Cyprinuscarpio (Cyprinidae) // Bull. Environ. Contam. And Toxicol. V. 58, № 3. Р. 456–462.
47. Siscar R., Koenig S., Torreblanca A., Solé M. 2014a. The role of metallothionein and selenium in metal detoxification in the liver of deep-sea fish from the NW Mediterranean Sea // Sci. Total Environ. V. 466–467. P. 898–905. DOI: 10.1016/j.scitotenv.2013.07.081
48. Siscar R., Torreblanca A., del Ramo J., Solé M. 2014b. Modulation of metallothionein and metal partitioning in liver and kidney of Solea senegalensis after long-term acclimation to two environmental temperatures // Environ. Res., V. 132. P. 197–205. DOI: 10.1016/j.envres.2014.04.020
49. Sylva A.O., Martinez C.B. 2014. Acute effects of cadmium on osmoregulation of the freshwater teleost Prochilodus lineatus: enzymes activity and plasma ions // Aquat Toxicol. V. 156. P. 161–168. DOI: 10.1016/j.aquatox.2014.08.009
50. Thophon S., Kruatrachue M., Upatham E. S., Pokethitiyook P., Sahaphong S., Jaritkhuan S. 2003. Histopathological alterations of white seabass, Lates calcarifer, in acute and subchronic cadmium exposure // Environ. Pollution. V.121. P. 307–320. DOI: 10.1016/S0269-7491(02)00270-1
51. Yeşilbudak B., Erdem C. 2014. Cadmium accumulation in gill, liver, kidney and muscle tissues of Common carp, Cyprinus carpio, and Nile tilapia, Oreochromis niloticus // Bull. Environ. Contam. Toxicol 92, 546–550. DOI: 10.1007/s00128-014-1228-3
52. Zauke G.P., Schmalenbach, I. 2006. Heavy metals in zooplankton and decapod crustaceans from the Barents Sea // Sci. Total Environ. V. 359. P. 283–294. DOI: 10.1016/j.scitotenv.2005.09.002.
Review
For citations:
Novikov M.A., Gorbacheva E.A., Kharlamova M.N. Cadmium content in commercial fishes of the Barents Sea (based on long-term data). Trudy VNIRO. 2024;198(1):87-99. (In Russ.) https://doi.org/10.36038/2307-3497-2024-198-87-99