Role of water temperature spatio-temporal variability in European anchovy catches dynamics in the northwestern Black Sea
https://doi.org/10.36038/2307-3497-2024-198-75-86
Abstract
The aim: to characterize the Black Sea water temperature influence on the anchovy fishing.
Methods: the assessment is based on long-term data of anchovy catch statistics and oceanographic data on water surface temperature during the period 1992–2023 by the Copernicus marine project. The main hypothesis about the relationship between changes in water temperature and annual catches of European anchovy was carried out by methods of cross-correlation and spatial correlation analysis.
Novelty: statistical analysis of long-term data allowed us to find significant spatio-temporal patterns between parameters of anchovy fishing and changes in water temperature.
Results: a significant positive relationship between anchovy catches in the northwestern part of the Black Sea and the water surface temperature is shown: the average annual (with a lag of 1 year, rs = 0,50) and the average winter (without lag, rs = 0,42) temperature. Positive trends of average annual and average winter sea surface temperatures have been described. There were significant positive spatial correlations between water temperature and anchovy catches in November-February, the most significant in December-January. The areas of spatial correlations between water temperature and anchovy catches increased in period 2008–2021 relative to 1993–2007. The existence of a relationship between the indicator of climate change (water temperature) and fishing parameters in the northwestern part of the Black Sea has been confirmed.
Practical significance: the established long-term correlation patterns between changes in water temperature and the parameters of anchovy fishing in the nortwestern part of the Black Sea allows to increase the efficiency and sustainability of Russian fisheries in these waters.
About the Authors
V. N. BelousovRussian Federation
21 в, Beregovaya st., Rostov-on-Don, 344002, Russia
M. M. Piatinskii
Russian Federation
21 в, Beregovaya st., Rostov-on-Don, 344002, Russia
V. A. Shlyakhov
Russian Federation
21 в, Beregovaya st., Rostov-on-Don, 344002, Russia
S. N. Kulba
Russian Federation
21 в, Beregovaya st., Rostov-on-Don, 344002, Russia
K. K. Kivva
Russian Federation
19, Okruzhnoy proezd, Moscow, 105187, Russia
References
1. Jelly Mnemiopsis leidyi (A. Agassiz) in the Azov and Black Seas: biology and consequences of settlement. 2000. / S.P. Volovik ed. Rostov-on-Don: BKN. 500 p. (In Russ.)
2. Grishin A.N. 2014. Features of forming of winter accumulations of anchovy (Engraulis encrasicolus) at the eastern coast of Crimea // Marine ecological journal. V. 13. Iss. 1. P. 9–16. (In Russ.)
3. Zuyev G.V. 2019 а. Modern state of the population of the European anchovy Engraulis encrasicolus (L.) (Pisces: Engraulidae) wintering off the coast of the Eastern Crimea and the North Caucasus // Marine biological journal. V. 4. Iss. 3. P. 56–68. DOI: 10.21072/mbj.2019.04.3.06. (In Russ.).
4. Zuyev G.V. 2019 б. Current population structure of European anchovy Engraulis encrasicolus L. (Engraulidae: Pisces) in the Sea of Azov — Black Sea basin and history of its formation // Marine biological journal. V. 4. Iss. 1. P. 45–62. (In Russ.).
5. Kazankova I.I. 2020. The effect of elevated temperature of the sea surface on the mussel recruitment off the coast of the southwestern Crimea // Systems of environmental control. Iss. 3. P. 133–138. DOI: 10.33075/2220-5861-2019-3-133-138. (In Russ.).
6. Kozhurin E. A., Shlyakhov V. A., Gubanov E. P. 2018. Crimea commercial fish dynamics in the Black Sea // Trudy VNIRO. V. 171. P. 157–169. P. 157–169. (In Russ.).
7. Panov B.N., Smirnov S.S., Spiridonova E.O., Negoda S.A. 2022. Assessment of autumn migration conditions of the black sea khamsa to the shores of Crimea in 2019 and 2020 according to the data from the satellite // Issledovaniya Zemli iz kosmosa. Iss. 6. P. 63–73. DOI: 10.31857/S0205961422060082. (In Russ.).
8. Panov B.N., Spiridonova O.E., Piatinskii M.M., Stytsyuk D.R. 2020. On the role of temperature as a factor influencing the behavior of the European sprat and the efficiency of its fishing // Aquatic Bioresources & Environment. V. 3. Iss. 1. P. 106–113. (In Russ.).
9. Adedeji O., Reuben O., Olatoye O. 2014. Global climate change // Journal of Geoscience and Environment Protection. V. 2. Iss. 2. P. 115–125.
10. Artusi R., Verderio P., Marubini E. 2002. Bravais-Pearson and Spearman correlation coefficients: meaning, test of hypothesis and confidence interval // The International journal of biological markers. V. 17. Iss. 2. P 148–151.
11. Bishara A. J., Hittner J. B. 2012. Testing the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approaches // Psychological methods. V. 17. Iss. 3. P. 399.
12. Bonhomme F., Arbidol C., Bănaru D, Bahri-Sfar L., FadhlaouiZid K., Strelkov P., Arculeo M., Soulier L., Quignard J–P. 2022. Systematics of European coastal anchovies (genus Engraulis Cuvier) // Journal of Fish Biology. V. 100. Iss. 2. P. 594–600.
13. Chashchin A.K. 1996. The Black Sea populations of anchovy // Scientia Marina. V. 60. P. 219–225.
14. Chashchin A., Shlyakhov V., Dubovik V., Negoda S. 2015. Stock Assessment of Anchovy (Engraulis encrasicolus L) in Northern Black Sea and Sea of Azov // Progressive Engineering Practices in Marine Resource Management. P. 209–243.
15. FAO. 2023. The State of Mediterranean and Black Sea Fisheries 2023 — Special edition. General Fisheries Commission for the Mediterranean. Rome. 52 p.
16. FAO. 2024. Fishery and Aquaculture Statistics — Yearbook 2021. Rome. 232 p.
17. Grishin A., Daskalov G., Shlyakhov V., Mihneva V. 2007. Influence of gelatinous zooplankton on fish stocks in the Black Sea: analysis of biological time-series // Marine Ecological Journal. V. 6. Iss. 2. P. 5–24.
18. Guraslan C., Fach B.A., Oguz T. 2017. Understanding the impact of environmental variability on anchovy overwintering migration in the Black Sea and its implications for the fishing industry // Frontiers in Marine Science. V. 4. P. 1–24.
19. Kirkland E. J. 2010. Bilinear interpolation // Advanced computing in electron microscopy. P. 261–263.
20. Kumar K.P., Reddi V. 2023. Significance of Spearman’s Rank Correlation Coefficient // International Journal For Multidisciplinary Research. V. 5. Iss. 4. P. 1–4.
21. Le Traon P.Y., Reppucci A., Alvarez F.E., Aouf L., Behrens A., et al. 2019. From observation to information and users: the Copernicus Marine Service perspective // Frontiers in Marine Science. V. 6. 234 p.
22. Lima L., Masina S., Ciliberti S.A., Peneva E.L., Cretí S., Stefanizzi L., Lecci R., Palermo F., Coppini G., Pinardi N., Palazov A. 2020. Black Sea Physical Reanalysis (CMEMS BS-Currents) (Version 1) [Data set]. Copernicus Monitoring Environment Marine Service (CMEMS). DOI 10.25423/CMCC/BLKSEA_REANALYSIS_PHYS_007_004
23. Micheli F., Halpern B. S., Walbridge S., Ciriaco S., Ciriaco S., Ferretti F., Fraschetti S., Lewison R., Nykjaer L, Rosenberg A.A. 2013. Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities // PloS one. V. 8. Iss. 12. P. 1–10.
24. Oğuz T., Öztürk B. 2011. Mechanisms impeding natural Mediterranization process of Black Sea fauna // Journal of Black Sea/Mediterranean Environment. 2011. V. 17. Iss. 3. P. 234–253.
25. Pebesma E., Bivand R. 2023. Spatial data science: With applications in R. Chapman and Hall/CRC. 314 p.
26. Pecl G. T., Araujo M. B., Bell J. D., Blanchard J., Bonebrake T., Chen I–C., Clark D.T. et al. 2017. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being // Science. V. 355. Iss. 6332. P. 1–9.
27. Yao S-L., Luo J-J., Wang P. 2017. Distinct global warming rates tied to multiple ocean surface temperature changes // Nature Climate Change. V. 7. P. 486–491.
Review
For citations:
Belousov V.N., Piatinskii M.M., Shlyakhov V.A., Kulba S.N., Kivva K.K. Role of water temperature spatio-temporal variability in European anchovy catches dynamics in the northwestern Black Sea. Trudy VNIRO. 2024;198(1):75-86. (In Russ.) https://doi.org/10.36038/2307-3497-2024-198-75-86