Preview

Trudy VNIRO

Advanced search

Analysis of spatio-temporal variability of Pacific water distribution in the Sea of Okhotsk based on Lagrangian approach

https://doi.org/10.36038/2307-3497-2023-193-101-118

Abstract

The aim of this work is characteristic of spatio-temporal variability of Pacific water distribution in the Sea of Okhotsk based on Lagrangian approach and spatial analysis.

Materials and methods. The study is based on geostrophic current data product from satellite altimetry. The dataset has resolution of 0,25° × 0,25° × 1 day. This data is used for calculation of approximately 100000 water parcels trajectories during 400 days back in time for every day from 31st of January 1997 to 17th of April 2022. For each date in this interval, those parcels which intersected the conditional Kuril transect were determined, as well as region and date of transect intersection. Those two parameters were used in cluster analysis with DBSCAN method in order to distinguish individual Pacific intrusions. Position, shape, and size of each intrusion were investigated.

Results allowed to suggest two types of indexes describing distribution of Pacific-origin water in the Sea of Okhotsk. First, centroid of particles of Pacific origin with residence time between 1 and 6 months is calculated. Variability of centroid position showed northward displacement of Pacific waters in spring-summer and south[1]ward displacement in autumn-winter. Eastward displacement towards Kamchatka coast usually occurs during winters and opposite westward displacement is usual for summers. In 1998, 2003, 2010, 2013, 2017, and 2019 waters of Pacific origin had the most northern location. Second type of indexes is based on location and shape characteristics of Pacific water intrusions. The fractal dimensionality and convexity measure of intrusions are rapidly decreasing after the intrusion reaches its maximum area. Centroids of the most prominent intrusions follow the path along 152–154 °E. Both types of indices showed intensification of Pacific inflow since 2010.

Practical value. The time-series of resulted indexes are suggested to be implemented in integrated ecosystem assessments of the eastern Sea of Okhotsk.

About the Authors

K. K. Kivva
Russian Federal Research Institute of Fisheries and Oceanography
Russian Federation

Kirill K. Kivva

«VNIRO», 19, Okruzhnoy proezd, Moscow, 105187



M. V. Budyansky
V.I. Il’ichev Pacific Oceanological Institute FEB RAS
Russian Federation

Maxim V. Budyansky

«POI FEB RAS», 43, Baltiyskaya St., Vladivostok, 690041



M. Y. Uleysky
V.I. Il’ichev Pacific Oceanological Institute FEB RAS
Russian Federation

 Mikhail Y. Uleysky

«POI FEB RAS», 43, Baltiyskaya St., Vladivostok, 690041



S. V. Prants
V.I. Il’ichev Pacific Oceanological Institute FEB RAS
Russian Federation

 Sergey V. Prants

«POI FEB RAS», 43, Baltiyskaya St., Vladivostok, 690041



References

1. Arkhipov B.V., Solbakov V.V., Soloviev M.B., Shapochkin D.A. 2013. Ecological modelling and Lagrangian approach // Mathematical modelling. V. 25. No. 3. P. 47–61. (In Russ.).

2. Budyansky M.V., Kulik V.V., Kivva K.K., Uleisky M.Y., Prants S.V. 2022. Lagrangian Analysis of Pacific Waters in the Sea of Okhotsk Based on Satellite Data in Application to the Walleye Pollock Fishery // Izvestiya, Atmospheric and Oceanic Physics. Vol. 58. No. 12. P. 1427–1437. DOI 10.1134/S0001433822120088.

3. Volvenko I.V. 2008. Species diversity of macrofauna biomass in the pelagic northwest Pacific // Izvestiya TINRO. V. 153. P. 27–48. (In Russ.).

4. Volkov A. F. 2015. Integral values of biomass and stock of zooplankton in the epipelagic layer of the area 71 in the North Pacific, including the Bering and Okhotsk Seas, and patterns of distribution for mass species // Izvestiya TINRO. V. 180. No. 1. P. 140–160. DOI: 10.26428/1606–9919–2015–180–140–160 (In Russ.).

5. Zuenko Yu.I., Aseeva N.L., Glebova S. Yu., Gostrenko L.M., Dubinina A. Yu., Dulepova E.P., Zolotov A.O., Loboda S.V., Lysenko A.V., Matveev V.I., Muktepavel L.S., Ovsyannikov E.E., Figurkin A.L., Shatilina T.A. 2019. Recent changes in the Okhotsk Sea ecosystem (2008–2018) // Izvestiya TINRO. V. 197. No. 2. P. 35–61. DOI: 10.26428/1606–9919–2019–197–35–61. (In Russ.).

6. Kolomeytsev V.V. 2020. Variability of the West Kamchatka Current in winters of 1994–2019, by altimetry data // Izvestiya TINRO. V. 200. No. 2. P. 412–426. (In Russ.) DOI: 10.26428/1606–9919–2020–200–412–426.

7. Lyakhov A.F., Kashtanov N.V. 2013. Fractal dimensionality of virtual image of mathematical matrix // Kompiuternye instrumenty v obrazovanii. No. 2. P. 59–66. (In Russ.).

8. Matveev V. I., Tikhomirova E. A., Luchin V. A. 2015. Primary production of the Sea of Okhotsk in the years of different temperature conditions // Russian Journal of Marine Biology. V. 41. No. 3. P. 176–185. DOI 10.1134/S1063074015030062

9. Mastryukov S.I., Chervyakova N.V. 2019. To the question of seasonal variability of the fields of constant currents in the Sea of Okhotsk // Navigation and Hydrography. No. 58. P. 71–75. (In Russ.).

10. Ovsyannikov E. E., Ovsyannikova S. L., Sheibak A. Yu. 2013. Dynamics and structure of pollock stocks in the northern part of the Sea of Okhotsk in the 2000s // Izvestia TINRO. V. 172. Р. 133–148. (In Russ.).

11. Prants S. V., Ponomarev V. I., Budyansky M. V., Uleysky M. Y., Fayman P.A. 2013. Lagrangian analysis of mixing and transport of water masses in the marine bays // Izvestiya, Atmospheric and Oceanic Physics. V. 49. No. 1. P. 82–96. DOI 10.1134/S0001433813010088. (In Russ.).

12. Ruleva N. Yu., Solbakov V. V. 2020. Ecological modelling and Eulerean approach, examples of calculations // Issledovanie operatsiy (modeli, sistemy, resheniya). V. 6. P. 70–82. (In Russ.).

13. Fayman P.A., Prants S.V., Budyansky M.V., Uleysky M.Y. 2021. Simulated Pathways of the Northwestern Pacific Water in the Okhotsk Sea // Izvestiya RAS. Atmospheric and Oceanic Physics. V. 57. No. 3. P. 329–340. DOI 10.1134/S000143382103004X. (In Russ.).

14. Figurkin A.L. 2002. Development of oceanographic conditions along Western Kamchatka based on monitoring data of 1997 and 2000 // Izvestia TINRO. V. 130. P. 103–116. (In Russ.).

15. Sheibak A. Yu., Antonov N.P., Kuznetsova E.N. 2022. Condition and structure of pollock stock in the Sea of Okhotsk in 2011–2020 // Trudy VNIRO. V. 187. P. 71–86. (In Russ.) DOI 10.36038/2307–3497–2022–187–71–86. (In Russ.).

16. Shuntov V.P., Ivanov O.A., Gorbatenko K.M. 2019. What happened in the ecosystem of the Okhotsk Sea in 2008–2018? // Izvestiya TINRO. V. 197. No. 2. P. 62–82. (In Russ.) DOI 10.26428/1606–9919–2019–197–62–82. (In Russ.).

17. Abdalla S., Kolahchi A.A., Ablain M. et al. 2021. Altimetry for the future: Building on 25 years of progress // Advances in Space Research. V. 68(2). P. 319–363.

18. Copernicus Marine Service. 2023. Global Ocean Gridded L 4 Sea Surface Heights And Derived Variables Reprocessed 1993 Ongoing. DOI 10.48670/moi-00148

19. Ester M., Kriegel H.P., Sander J., Xu X. 1996. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise // Institute for Computer Science, University of Munich. Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96). P. 226–231. DOI 10.5555/3001460.3001507.

20. Hahsler M., Piekenbrock M., Doran D. 2019. dbscan: Fast densitybased clustering with R // Journal of Statistical Software. V. 91. P. 1–30.

21. Hubert M., Vandervieren E. 2008. An adjusted boxplot for skewed distributions // Computational statistics & data analysis. V. 52(12). P. 5186–5201.

22. Nadaraya E.A. 1964. On estimating regression // Theory of Probability & Its Applications. 9(1). P. 141–142.

23. Pebesma E. 2018. Simple Features for R: Standardized Support for Spatial Vector Data // The R Journal. V. 10:1. P. 439–446.

24. Prants S.V., Uleysky M. Y., Budyansky M.V. 2017. Lagrangian oceanography: large-scale transport and mixing in the ocean. Springer. 273 p.

25. Schubert E., Sander J., Ester M., Kriegel H.P., Xu X. 2017. DBSCAN revisited, revisited: why and how you should (still) use DBSCAN // ACM Transactions on Database Systems (TODS). V. 42(3). P. 1–21.

26. Watson G.S. 1964. Smooth regression analysis // Sankhyā: The Indian Journal of Statistics, Series A.P. 359–372.

27. Wickham H. 2011. ggplot2 // Wiley interdisciplinary reviews: computational statistics. V. 3(2). P. 180–185.

28. Zunic J., Rosin P.L. 2004. A new convexity measure for polygons // IEEE Transactions on Pattern Analysis and Machine Intelligence. V. 26(7). P. 923–934


Review

For citations:


Kivva K.K., Budyansky M.V., Uleysky M.Y., Prants S.V. Analysis of spatio-temporal variability of Pacific water distribution in the Sea of Okhotsk based on Lagrangian approach. Trudy VNIRO. 2023;193:101-118. (In Russ.) https://doi.org/10.36038/2307-3497-2023-193-101-118



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-3497 (Print)

По вопросу подписки и приобретения номеров журналов просьба обращаться в ООО «Агентство «КНИГА-СЕРВИС» (т.:  495 – 680-90-88;  E-mail: public@akc.ru  Web: www.akc.ru).