Mercury content in commercial fishes of the Barents Sea (based on long-term data)
https://doi.org/10.36038/2307-3497-2023-191-112-123
Abstract
The aim: to study the amount of mercury found in muscle tissue and liver of the main commercial fish species of the Barents Sea.
Research material was comprised of fish samples collected during the expeditions of “PINRO” named after Knipovich in the Barents Sea in 2009-2020. The study was based on muscle and liver samples taken from cod, haddock, long rough dab, Greenland halibut, plaice and spotted catfish. Over 1500 samples were analyzed. Novelty: for the first time a comparative analysis of Hg concentration in six commercial fish species of the Barents Sea was run and background readings were provided using such a big amount of data.
Methods used: the total content of Hg in fish samples was measured using Shimadzu (Japan) Cold Vapor Atomic Absorption Spectrophotometer (CVAAS). Statistical data processing and charting were done using MS Excel and application software package of Statistica 13.
Results: it was shown that the mean amount of Hg in muscle and liver of the studied fish was below the maximum concentration of 0.5 pg/g of wet weight acceptable by sanitary standards. Content of Hg in liver was two times higher than in muscle. No evidence of anthropogenic contamination of the studied species by mercury was found. The total content of Hg in muscle and especially in liver demonstrated a considerable variability, which is probably linked to seasonal changes in the diet. There might be other factors influencing the mercury concentration, such as taxonomic affiliation, regional peculiarities, physiological state, and fattiness.
Practical significance: the acquired results were used to determine whether the commercial fishes meet the sanitary standards used in Russia.
Keywords
About the Authors
M. A. NovikovRussian Federation
Mikhail А. Novikov
6, Academician Knipovich St., Murmansk, 183038
E. A. Gorbacheva
Russian Federation
Elena А. Gorbacheva
6, Academician Knipovich St., Murmansk, 183038
M. N. Kharlamova
Russian Federation
Marina N. Kharlamova
9, Kommuny St., Murmansk, 183038
References
1. Akopov E. I., Ivashevskaya O.A., Korzhenko V P 1976. On the circulation of heavy metals in the biosphere. Moscow: Nauka. P 272-284. (In Russ.).
2. Berestovskij E.G. 1995. Nutrition and food strategy of the long rough dab Hippoglossoides platessoides limandoides in the Barents and Norwegian Seas // Voprosy ihtiologii. V. 35. № 1. P 94-104. (In Russ.).
3. Dolgov A. V 2016. Composition, formation and trophic structure of the Barents Sea fish communities. Murmansk: PINRO. 336 pp. (In Russ.).
4. Study of ecosystems of fishery water reservoirs, collection and processing of data on aquatic biological resources, techniques and technology for their extraction and processing. 2004. Instructions and guidelines for the collection and processing of data on the seas of the European North and the North Atlantic. M.: VNIRO. 299 p.
5. Karamushko L.I. 2007. Bioenergetics of fish of the northern seas. Moscow: Nauka. 253 pp. (In Russ.).
6. Kovekovdova L. T., Kiku D.P., Kasyanenko I.S. 2016. Monitoring of water environment and food safety of commercial objects in the Far East fishery basin (toxic elements) // Marine biological research: achievements and prospects: v 3-h t. Mat. Vseros. nauch.-prakt. konf. with intern. participation, to the 145th anniversary of the Sevastopol Biological Station. Sevastopol: EHKOSI-Gidrofizika Publush. V. 3. P 111-114. (In Russ.).
7. Konstantinova L. L., Dvinin Yu.F., Lebskaya T. K., Kuz’mina V.I. 1997. Technochemical properties of commercial fish of the North Atlantic and adjacent seas of the Arctic Ocean. Murmansk: PINRO, 183 pp. (In Russ.).
8. Lebedeva N. V., Zimina O. L., Fateev N. N., Nikulina A. L., Berchenko I. V., Meshcheryakov N. I. 2018. Mercury in hydrobionts and their habitat in Gmnfjorden, West Spitsbergen, in early springtime // Geohimiya. № 4. P 351 — 362. doi: 10.7868/S0016752518040052. (In Russ.).
9. Moiseenko G. I., Gashkina N. A. 2016. Bioaccumulation of mercury in fish as indicator of water pollution // Geochemistry. № 6. P. 495-504. doi: 10.7868/S0016752516060042. (In Russ.).
10. Morozov N. P., Petukhov S.A. 1986. Trace elements in the commercial ichthyofauna of the World Ocean. M.: Agropromizdat. 160 pp. (In Russ.).
11. Moore J., Ramamoorthy S. 1987. Heavy metals in natural waters: Applied monitoring and impact assessment. Moscow: Mir. 288 pp. (Moore J., Ramamoorthy S. 1984. Heavy metals in natural waters. Applied Monitoring and Impact Assesment. Springer-Verlag, New York-Berlin-Heidelberg-Tokyo. 288 p.). (In Russ.).
12. Nemova N. N., Lysenko L. A., Meshcheryakova O. V., Komov V. T. 2014. Mercury in fish: Biochemical indicatio // Biosfera. V. 6. № 2. P. 176-186. (In Russ.).
13. Novikov M. A., Gorbacheva E. A., Lapteva A. M. 2021. Arsenic content in commercial fish of the Barents Sea (according to long-term data) // Izvestiya TINRO. V. 201, № 4. P 833844. doi: 10.26428/1606-9919-2021-201-833-844. (In Russ.).
14. Novikov M.A., Draganov D.M. 2021. Atlas of bottom sediments pollution in the Barents Sea. Murmansk: PINRO Publish. 182 pp. (In Russ.).
15. Popov P A, Androsova N. V., Popov V.A. 2018. Metals contant in fihes of the Tom river mouth (Upper Ob) // Rossiiskii zhurnal prikladnoi ekologii. № 2. P 35-38. (In Russ.).
16. Popov P.A., Androsova N.V., Popov V.A. 2019. Nature of mercury accumulation in fishes of the Ob river // Rossiiskii zhurnal prikladnoi ekologii. № 4. P 51-56. (In Russ.).
17. Filenko O.F. 1988. Aquatic toxicology. Moscow: MGU Publish. 154 pp. (In Russ.).
18. Shevchenko V. P., Lisitzin A. P., Vinogradova A. A., Serova V V., Shtein R. 2001. Fluxes of aerosols to the Arctic Ocean surface and their role in sedimentation and in formation of the Arctic environment // Experience of system oceanologic studies in the Arctic. Moscow: Scientific world. P 384-393. (In Russ.).
19. Andreasson M., Dave G. 1995. Transfer of heavy metals from sediment to fish, and their biliary excretion // J. Aquat. Ecosys. Health. V. 4. P. 221-230. doi:10.1007/BF00118002
20. Bank M. S., Frantzen S., Duinker A., Amouroux D., Tessier E., Nedreaas K., Maage A, Nilsen B. M. 2021. Rapid Temporal Decline of Mercury in Greenland Halibut (Reinhardtius hippoglossoides) // Environ. Pollut. V. 289. Is.117843. doi:10.1016/j.envpol.2021.117843
21. Baeyens W., Leermakers M., Papina T., Saprykin A., Brion N., Noyen J., De Gieter M., Elskens M., Goeyens L. 2003. Bioconcentration and biomagnification of mercury and methylmercury in North Sea and Scheldt estuary fish. Arch. Environ // Contam. Toxicol. V. 45. P. 498-508. doi:10.1007/s00244-003-2136-4
22. Brown T.M., Macdonald R. W., Muir D.C.G., Letcher R.J. 2018. The distribution and trends of persistent organic pollutants and mercury in marine mammals from Canada's eastern Arctic // Sci. Total Environ. V. 618. P. 500-517. doi:10.1016/j.scitotenv.2017.11.052
23. Capri A. 1997.Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere // Water, Air, Soil Pollut. V. 98 (3). P. 241-254.
24. Chouvelon T., Spitz J., Caurant F., Mendez Fernandez P., Autier J., Lassus Debat A., Chappuis A, Bustamante P 2012. Enhanced bioaccumulation of mercury in deep-sea fauna from the Bay of Biscay (north-east Atlantic) in relation to trophic positions identified by analysis of carbon and nitrogen stable isotopes // Deep Sea Res. Part Oceanogr. Res. Pap. V. 65. P 113-124. doi:10.1016/j.dsr.2012.02.010
25. Cossa D., Harmelin-Vivien M., Mellon-Duval C., Loizeau V., Averty B., Crochet S., Chou L., Cadiou J.-F.2012. Influences of bioavailability, trophic position, and growth on methylmercury in hakes (Merluccius merluccius) from northwestern Mediterranean and northeastern Atlantic // Environ. Sci. Technol. V. 46. P. 4885-4893. doi:10.1021/es204269w
26. Dietz R., Outridge P. M., Hobson K. A. 2009. Anthropogenic contributions to mercury levels in present-day Arctic animals a review // Sci. Total Environ. V. 407 (24). P6120-6131.
27. Finley M. L.D., Kidd K.A., Curry, R.A., Lescord G.L., Clayden M.G., O’Driscoll N.J. 2016. A comparison of mercury biomagnification through lacustrine food webs supporting brook trout (Salvelinus fontinalis) and other salmonid fishes. Front. Environ. Sci. V. 4, (23). doi:10.3389/fenvs.2016.00023
28. Fitzgerald W.F., Lamborg C.H., Hammerschmidt C.R. 2007. Marine biogeochemical cycling of mercury // Chem. Rev. V. 107. P 641-662. doi:10.1021/cr050353m.
29. Giraldo C., Stasko A., Walkusz W., Majewski A., Rosenberg B. Power M, Swanson H, Reist J.D.2018. Feeding of Greenland halibut (Reinhardtius hippoglossoides) in the Canadian Beaufort Sea // J. Mar. Syst. V. 183. P. 32-44. doi: 10.1016/j.jmarsys.2018.03.009
30. Golubeva N.I., Matishov G.G., Burtseva L.V. 2005. Precipitation of heavy metals in the Barents Sea region // Doklady Earth Sciences. Т. 401. № 3. P 469-472.
31. Gopakumar A., Giebichenstein Ju., Raskhozheva E., Borga K. 2021. Mercury in Barents Sea fish in the Arctic polar night: Species and spatial comparison // Mar. Pollut. Bull. V. 169. Is. 112501. doi:10.1016/j.marpolbul.2021.112501
32. Griffiths J. R. Kadin M., Nascimento F. J.A., Tamelander T., Tornroos A, Bonaglia S., Bonsdorff E., Bruchert V, Gardmark A, Jarnstom M., Kotta J., Lindergen M., Nordstrom M. C., Norkko A, Olsson J., Weigel B., Zydelis R., Blenckner T., Niiranen S., Winder M. 2017. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world // Global Change Biol. V. 23. P 2179-2196.
33. Halbach K, Mikkelsen O., Berg T, Steinnes E. 2017. The presence of mercury and other trace metals in surface soils in the Norwegian Arctic // Chemosphere. V. 188. P 567-574. doi:10.1016/j.chemosphere.2017.09.012
34. Harris H.H., Pickering I.J., George G.N. 2003. The chemical form of mercury in fish // Science. V. 301. Is. 1203. doi:10.1126/science.1085941
35. Hazen E. L, Abrahms B, Brodie S., Carroll G. Jacox M., Savoca M. Scales K., Sydeman W., Bograd S. 2019. Marine top predators as climate and ecosystem sentinels // Front. Ecol. Environ. V. 17. P 565-574. doi:10.1002/fee.2125
36. Jardine L.B., Burt M.D.B., Arp P.A., Diamond A. W. 2009. Mercury comparisons between farmed and wild Atlantic salmon (Salmo salar L.) and Atlantic cod (Gadus morhua L.) // Aquac. Res. V. 40 (10). P 1148-1159. doi:10.mi/J.1365-2109.2009.02211.X
37. Julshamn K., Frantzen S., Valdersnes S., Nilsen B., Maage A., Nedreaas K. 2011. Concentrations of mercury, arsenic, cadmium and lead in Greenland halibut (Reinhardtius hippoglossoides) caught off the coast of northern Norway // Mar. Biol. Res. 7 (8), 733-745. doi: 10.1080/17451000.2011.594893
38. Kim M.-K., Zoh K.-D. 2012. Fate and transport of mercury in environmental media and human exposure // J. Prev. Med. Public Health. V. 45. P 335-343. doi: 10.3961/jpmph.2012.45.6.335
39. Kuras R., Janasik B., Stanislawska M., Wasowicz W. 2018. Revision of reciprocal action of mercury and selenium // Int. J. Occup. Med. Environ. Health. V. 31 (5). P 575-592. doi:10.13075/ijomeh.1896.01278
40. Lavoie R.A., Jardine T.D, Chumchal M.M., Kidd K.A, Campbell L.M. 2013. Biomagnification of mercury in aquatic food webs: a world wise meta-analysis // Environ. Sci. Technol. V. 47: 13385-13394. doi:10.1021/es403103t
41. Le Croizier G., Lacroix C., Artigaud S., Le Floch S., Raffray J., Penicaud V., Coquille V., Autier J., Rouget M.-L., Le Bayon N., Laё R., Tito De Morais L.2018. Significance of metallothioneins in differential cadmium accumulation kinetics between two marine fish species // Environ. Pollut V. 236. P. 462-476. doi:10.1016/j.envpol.2018.01.002
42. Mason R. P., Laporte J. M., Andres S. 2000. Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish // Arch. Environ. Contam. Toxicol. V. 38 (3). P 283-297. doi: 10.1007/s002449910038
43. McKinney M.A., Dean K., Hussey N. E., Cliff G., Wintner S. P., Dudley S. F.J., Zungu M. P., Fisk A. T. 2016. Global versus local causes and health implications of high mercury concentrations in sharks from the east coast of South Africa // Sci. Total Environ. V. 541. P. 176-183. doi:10.1016/j.scitotenv.2015.09.074
44. Mille T., Bisch A, Caill-Milly N., PierreCresson P., Deborde J., Gueux A., Morandeau G., Monperrus M.2021. Distribution of mercury species in tissues and trophic levels of commonly consumed fish species from the south Bay of Biscay (France) // Mar. Pollut. Bull. V. 166. P 112-172. doi:10.1016/j.marpolbul.2021.112172
45. Petersen G., Iverfeldt C. C., Munthe J. 1995. Atmospheric mercury species over central and northern Europe: model calculations and comparison with the observations from the Nordic air and precipitation network for 1987 and 1988 // Atmos. Environ. V. 29 (1). P 47-67. doi:10.1016/1352-2310(94)00223-8
46. Reinhart B. L., Kidd K. A., Curry R. A., O’driscoll N.J., Pavey S.A. 2018. Mercury bioaccumulation in aquatic biota along a salinity gradient in the Saint John River estuary // J. Environ. Sci. (Beijing, China). V. 68. P. 41-54. doi:10.1016/j.jes.2018.02.024
47. Rodrigues P.A. Ferrari R.G., Santos L.N., Junior A.C. 2019. Mercury in aquatic fauna contamination: A systematic review on its dynamics and potential health risks // J. Environ. Sci. (Beijing, China). V. 84. P 205-218. doi:10.1016/j.jes.2019.02.018
48. Power M., Klein G. M., Guiguer K. R.R.A., Kwan M. K.H. 2002. Mercury accumulation in the fish community of a subArctic lake in relation to trophic position and carbon sources // J. Appl. Ecol. V. 39 (5). P 819-830. doi:10.1046/j.1365-2664.2002.00758.x
49. Soerensen A., Jacob D., Schartup A., Fisher J., Lehnherr I., Louis V.L. St, Heimburger L.-E., Sonke J. E., Krabbenhoft D. P., Sunderlandet E.M. 2016. A mass budget for mercury and methylmercury in the Arctic Ocean // Global Biogeochem. Cycles. V. 30. P. 560-575. doi:10.1002/2015GB005280
50. Sonke J. E., Teisserenc R., Heimburger-Boavida L.-E., Petrova M. V., Marusczak N., Le Dantec T, Chupakov A. V, Li C, Thackray C. P., Sunderland E.M, Tananaev N., Pokrovsky O.S. 2018. Eurasian river, spring flood observations support net Arctic Ocean mercury export to the atmosphere and Atlantic Ocean. // PNAS. V. 115 (50): 11586-11594. doi:10.1073/pnas.1811957115
51. Svobodova Z, Dusek L., Hejtmanek M., Vycusova B., Smid R. 1999. Bioaccumulation of mercury in various fish species from Orlik and Kamyk water reservoirs in the Czech Republic // Ecotoxicol. Environ. Safety. V. 43 (3). P 231-240. doi:10.1006/eesa.1999.1783
52. Swain E. B., Jakus P. M., Rice G., Lupi F., Maxson P A, Pacyna J.M., Penn A., Spiegel S.J, Veiga M. M. 2007. Socioeconomic Consequences of Mercury Use and Pollution // AMBIO. V. 36 (1). P 45-61. doi:10.1579/0044-7447(2007)36[45:scomua]2.0.co;2
53. Wang W.-X., Wong R. S.K. 2003. Bioaccumulation kinetics and exposure pathways of inorganic mercury and methylmercury in a marine fish, the sweetlips Plectorhinchus gibbosus // Mar. Ecol. Prog. V. 26. P 257-268. doi:10.3354/meps261257
54. Wang R., Feng X.-B., Wang W.-X. 2013. In vivo mercury methylation and demethylation in freshwater Tilapia quantified by mercury stable isotopes // Environ. Sci. Technol. V. 47: 7949-7957. doi:10.1021/es3043774
55. Watras C.J., Back R.C., Halvorsen S., Hudson, R.J.M. Morrison K.A, Wente S. P. 1998. Bioaccumulation of mercury in pelagic freshwater food webs // Sci. Total Environ. V. 219 (2-3). P 183-208. doi:10.1016/s0048-9697(98)00228-9
56. WHO. Environmental health criteria 101: Methylmercury. Geneva, Switzerland: World Health Organization, 1990. 144 p.
Review
For citations:
Novikov M.A., Gorbacheva E.A., Kharlamova M.N. Mercury content in commercial fishes of the Barents Sea (based on long-term data). Trudy VNIRO. 2023;191:112-123. (In Russ.) https://doi.org/10.36038/2307-3497-2023-191-112-123