Preview

Trudy VNIRO

Advanced search

Marine brown algae – perspective source of BAS for medical, pharmaceutical and food use

https://doi.org/10.36038/2307-3497-2021-186-156-172

Abstract

The aim: of this work is to study the composition and properties of brown algae biologically active substances (BAS).

Result: A review of the data published by foreign and Russian authors on the composition and properties of brown algae BAS, as well as the data of the article authors on BAS of algae from White and Barents Seas, is presented. Brown algae of families Laminariales and Fucales (Phaeophyceae) are considered sources of natural biologically active substances.

Novelty: New data are presented that sulfated polysaccharides — fucoidans, as well as alginates, polyphenols and other substances with various bioactive properties, with antiviral and anticoagulant potentials, have a positive effect on human health.

Practical significance: Recommendations for the use of algae directly in food, for obtaining therapeutic and prophylactic, medical products, pharmaceuticals, SFP, FFP, dietary supplements are shown. Their possible use is recommended as a remedy for the treatment of lung cancer and other tumors, diabetes and in the complex therapy of influenza and COVID-19.

Methods used: Data on the composition and properties of biologically active substances (BAS) of brown algae are given with the involvement of a review of foreign and domestic, published works and the results of our own research. During the research, modern instrumental methods were used.

About the Authors

A. V. Podkorytova
Russian Federal Research Institute of Fisheries and Oceanography («VNIRO»)
Russian Federation

Antonina V. Podkorytova

19, Okruzhnoy proezd, Moscow, 105187



A. N. Roshchina
Russian Federal Research Institute of Fisheries and Oceanography («VNIRO»)
Russian Federation

Anna N. Roshchina

19, Okruzhnoy proezd, Moscow, 105187



References

1. Aminina N. M., Vishnevskaya T. I., Karaulova E. N., Epur V. P., Yakush E. V. 2020. Prospects for the Use of Commercial and Potentially Commercial Brown Algae of the Far Eastern Seas as a Source of Polyphenols // Biology of the Sea. Vol. 46. № 1. P. 37–44. DOI: 10.31857/S0134347520010027.

2. Besednova N. N., Zvyagintseva T. N., Andryukov B. G., Zaporozhets T. S., Kuznetsova T. A., Kryzhanovsky S. P., Guseva L. G., Shchelkanov M. Yu. 2021. Seaweed-Derived Sulfated Polysaccharides as Potential Agents for Prevention and Treatment of Influenza and COVID-19 // Antibiotics and Chemotherapy. V. 66. № . 7–8. P. 50–66. DOI 10.37489/0235–2990–2021–66–7–8–50–66.

3. Besednova N. N., Kuznetsova T. A., Zaporozhets T. S., Zvyagintseva T. N. 2015. Brown Seaweeds as a Source of New Pharmaceutical Substances with Antibacterial Action // Antibiotics and Chemotherapy. V. 60. (3–4). P. 31–41.

4. Blinova E. I. 2007. Seaweeds and Seagrasses of the European part of Russia (flora, distribution, biology, resources, mariculture). M.: VNIRO Publish. 114 p.

5. Bogolitsyn K. G., Druzhinina A. S., Ovchinnikov D. V., Kaplitsin P. A., Shulgina E. V., Parshina A. E. 2018. Polyphenols of Brown Algae // Chemistry of Plant Raw Materials. № . 3. P. 5–21. Doi: 10.14258/jcprm.2018031898.

6. Glubokovsky M. K., Tarasyuk S. N., Zverkova L. M., Semenyak L. V., Murzov N. N., Petrova N. V., Brazhnik S. Yu., Skakun V. A. 2012. Raw Material Base of Russian Fisheries in 2012: Areas of Russian Jurisdiction. M.: VNIRO Publish. 497 p.

7. Dobrovolsky A. B., Titaeva E. V. 2013. Thrombin formation and its functions in the hemostatic system // Atherothrombosis. № 1. P. 66–72.

8. Evseeva N. V. 2014. The structure of phytocenoses and dynamics of cenopopulations of Fucus algae in the littoral zone of western Murman // Biodiversity and stability of living systems. Abstracts. XIII Int. scientific-practical environmental conf. Belgorod: Publishing House «Belgorod» NRU BelGU. P. 91–92.

9. Ignatova T. A., Roshchina A. N., Podkorytova A. V. 2021. Technology of extraction of a complex of pigments from Fucus of the White Sea // Food technologies: research, innovation, marketing. The materials of the I Intern. Scien.-Pract. conf. (September 23–25, 2021) / ed. E. P. Masyutkin; scien. ed. by O. E. Bityutskaya. Kerch: KGMTU. P. 78–83.

10. Klindukh M. P., Obluchinskaya E. D. 2013. Comparative study of the chemical composition of brown algae Fucus vesiculosus and Ascophyllum nodosum // Vestnik MGTU, V. 16. № . 3. P. 466–471.

11. Korzun V. I., Voronova Yu.G., Parats A. I., Rogalskaya L. A., Podkorytova A. V. 1992. Alginates in the prevention of internal exposure to strontium // Medical Radiology. № . 3. P. 31–34.

12. Korovkina N. V., Bogdanovich N. I., Kutakova N. A. 2007. Study of the Brown Algae composition in the White Sea for the purpose of further processing // Chemistry of Plant Raw Materials. № 1. P. 59–64.

13. Kudryashov A. P., Ditchenko T. I., Molchan O. V., Smolich I. I., Yakovets O. G. 2011. Plant physiology: laboratory practice for students of the Faculty of Biology. Minsk: BSU, 76 P.

14. Obluchinskaya E. D. 2005. Technologies of medicinal and therapeutic-prophylactic agents from brown algae. Apatity: Publishing house of the KSC RAS. 164 P.

15. Obluchinskaya E. D. 2020. Phytochemical and technological studies of algae in the Barents Sea // Proceedings of the KSC RAS. Vol.11. № . 4–7. P. 178–198. DOI 10.37614/2307–5252.2020.11.4.008.

16. Obluchinskaya E. D., Zakharova L. V. 2020. Comparative study of brown algae polyphenols in the Arctic and North Atlantic seas // Chemistry of plant raw materials. № 4. P. 129–137. DOI 10.14258/jcprm.2020047755.

17. Obluchinskaya E. D., Pozharitskaya O. N., Flisyuk E. V., Shikov A. N. 2020. Optimization of the composition and technology of obtaining tablets with fucoidan and their biopharmaceutical evaluation // Chemical and pharmaceutical journal. V. 54. № . 5. P. 38–42. DOI 10.30906/0023–1134–2020–54–5–38–42.

18. Podkorytova A. V. 2005. Marine macrophytic algae and grasses. M.: VNIRO Publish. 175 p.

19. Podkorytova A. V., Aminina N. M., Kovaleva E. A., Korzun V. N., Parats A. N. 1992. Changes in the sorption activity of alginic acid in the process of obtaining therapeutic and prophylactic products // Izvestiya TINRO. V. 114. P. 146–149.

20. Podkorytova A. V., Vafina L. Kh., Muravyova E. A., Sharina Z. N. 2009. Sanitary and hygienic characteristics of brown algae in the White and Barents Seas // Rybprom № 4. p. 33–39.

21. Podkorytova A. V., Vishnevskaya T. I. 2003 a. Sea brown algae – a natural source of iodine // Parapharmaceuticals. Pharmaceutical Bulletin № 2. p.22–23.

22. Podkorytova A. V., Vishnevskaya T. I. 2003 b. Sea brown algae – a natural source of iodine // Parapharmaceuticals. Pharmaceutical Bulletin № . 3. p. 18–19.

23. Podkorytova A. V., Ignatova T. A., Roshchina A. N., Kotelnikova L. Kh. 2021. Seaweed of the Far Eastern and Northern fishery basins: reserves, production, prospects for use // II Int. scientific-practical conf. «Innovative directions of integration of science, education and production» / ed. Masyutkina E. P. Kerch: KGMTU. P. 253–257.

24. Podkorytova A. V., Kotelnikova L. Kh., Shashkina I. A. 2021. Vitalgar biogels from algae of the Laminariaceae family, their role in the fight against COVID-19 // Questions of balneology, physiotherapy and exercise therapy. V. 98. № . 3–2. P. 153–154. DOI 10.17116/kurort20219803221.

25. Podkorytova A. V., Roshchina A. N., Burova N. V. 2020. Algae-macrophytes of the Seas Coastal Zones of the Northern Fishery Basin: extraction, processing, substantiation of their integrated use // Innovative directions of science, education and production integration. Abstr. of the participants of the I Intern. scien.-pract. conf. / Ed. E. P. Masyutkina. Kerch: KGMTU. P. 271–276.

26. Podkorytova A. V., Roshchina A. N., Evseeva N. V., Usov A. I., Golovin G. Yu., Popov A. M. 2020. Brown algae of the orders Laminariales and Fucales from the Sakhalin-Kuril region: stocks, extraction, use // Trudy VNIRO. Vol. 181. P. 202–223. DOI: 10.36038/2307–3497–2020–181–235–256.

27. Podkorytova A. V., Roshchina A. N., Kotelnikova L. Kh. (in press) Scientific and practical bases of sequential extraction of fucoidans and enterosorbents from brown algae // IX Int. Baltic Forum. X Int. scientific-practical conf. «Food and Marine Biotechnology» Part 8. Kaliningrad: BFFSA Publish.

28. Podkorytova A. V., Roshchina A. N., Kotelnikova L. Kh. 2021. Integrated technology for the production of sodium alginate, fucoidan-containing concentrates and food products from Saccharina japonica // Coll. abstracts of participants of the pool of scientific and practical. conf. Kerch: KGMTU. P. 229–233.

29. Repina O. I. 2005. Substantiation and development of the technology of biologically active substances from fucus algae of the White Sea. Abstract of the thesis. dis. … cand. tech. sciences. M.: VNIRO. 24 p.

30. Rybalkina O. Yu., Lopatina K. A., Safonova E. A., Efimova L. A. 2014. Prospects for the use of sodium alginate with different molecular weights in the complex therapy of malignant neoplasms // Bulletin RSC RAMS. No. 5 (99). P. 63–67.

31. Urvantseva A. M., Bakunina N. Yu., Kim N. Yu., Isakov V. V., Glazunov V. P., Zvyagintseva T. N. 2004. Isolation of purified fucoidan from a natural complex with polyphenols and its characteristics // Chemistry of vegetable raw materials. № . 3. P. 15–24.

32. Usov A. I. 2018. Features of the structural analysis of sulfated polysaccharides // Fundamental glycobiology. Coll. of materials IV Russian conf. / ed. S. G. Litvinets. Kirov: Vyatka State University. P. 160–161.

33. Usov A. I., Bilan M. I. 2009. Fucoidans — sulfated polysaccharides of Brown Algae // Advances of Chemistry. V. 78. № . 8. P. 846–862.

34. Usoltseva R. V., Zvyagintseva T. N., Ermakova S. P. 2019. Structural diversity of brown algae laminarans, prospects for their use // Bulletin of the FEB RAS. № . 5 (207). P. 84–89. DOI 10.25808/08697698.2019.207.5.010.

35. Ushakova N. A., Morozevich E. E., Ustyuzhanina N. E., Bilan M. I., Usov A. I., Nifant’ev N.E., Preobrazhenskaya M. E. 2008. Anticoagulant activity of fucoidans from brown algae // Biomedical chemistry. V. 54. № . 5. P. 597–606.

36. Khotimchenko S. V. 2003. Lipids of macrophyte algae and grasses. Structure, distribution, analysis. Vladivostok: Dalnauka. 230 p.

37. Shtilman M. I., Podkorytova A. V., Nemtsev S. V., Kryazhev V. N., Peshekhonova A. L., Sdobnikova O. A., Panov A. V., Svitzov A. A., Frumin L. E., Ivankin A. N., Volova T. G., Zhila N. O., Shishatskaya E. I., Istranov L. P., Istranova E. V., Sakvarelidze M. A., Gusarov D. A., Berkovsky A. L., Podgorsky V. S., Kovalenko E. A. 2015. Technology of Biopolymers for Biomedical Purposes. Natural Polymers. Moscow: BINOM Knowledge Laboratory. 328 p.

38. Afonso N. C., Catarino M.D, Silva A. M.S., Cardoso S. M. 2019. Brown Macroalgae as Valuable Food Ingredients // Antioxidants. Vol. 8. № 9. P. 365. DOI 10.3390/antiox8090365.

39. Ariedea M. B., Candidoa T. M., Morocho J.A L, Robles V. M.V, de Carvalhob J. K.M, Babya A. R. 2017. Cosmetic attributes of algae: A review // Algal Research. 25. Р. 483–487. DOI:10.1016/J.ALGAL.2017.05.019.

40. Ayrapetyan O. N., Zhurishkina E. V., Lebedev D. V., Kulminskaya A. A., Lapina I. M., Obluchinskaya E. D., Skorik Y. A. 2021. Antibacterial properties of fucoidans from the brown algae Fucus vesiculosus L. of the Barents Sea // Biology. Т. 10. № 1. Р.1–17. DOI 10.3390/biology10010067.

41. Cardozo K. H.M., Guaratini T., Barros M. P., Falcão V. R., Tonon A. P., Lopes N. P., Campos S., Torres M. A., Souza A. O., Colepicolo Р., Pinto Е. 2007. Metabolites from algae with economic impact // Comp. Biochem. Physiol. Part C. № 146. P. 60–78.

42. Church F. C., Meade J. B., Treanor R. E., Whinna H. C. 1989. Antithrombin activity of fucoidan // J. biol. Chem. 264: Р. 3618–3623.

43. Colliec S., Fischer A. M., Tapon-Bretaudiere J., Boisson C., Durand P., Jozefonvicz J. 1991. Anticoaggulant properties of a fucoidan fraction // Thromb. Res. 64: Р. 143–154.

44. Erpel F., Mateos R., Peres-Kimenez J., Peres-Correa J. 2020. Phlorotannins: From isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential // Food Res Int. Nov;137:109589. DOI:10.1016/j.foodres.2020.109589.

45. Fitton J. H., Park A. Y., Karpiniec S. S., Stringer D. N. 2021. Fucoidan and Lung Function: Value in Viral Infection // Mar Drugs. 19, 4, 7 p.

46. Graufel V, Kloareg B, Mabeau S, Durand P, Jozefonvicz J. 1989. New natural polysaccharides with potent antithrombic activity: fucans from brown algae // Biomaterials. 10: Р. 363–368. DOI: 10.1016/0142–9612(89)90127–0.

47. Kordjazi M., Etemadian Y., Shabanpour B., Pourashouri P. 2019. Chemical composition, antioxidant and antimicrobial activities of fucoidan extracted from two species of brown seaweeds ( Sargassum ilicifolium and S.angustifolium ) around Qeshm Island // Iranian J. of Fisheries Sciences. С. 18(3). Р. 457–475. DOI: 10.22092/IJFS.2018.115491.

48. Matou S., Helley D., Chabut D., Bros A., Fischer A-M. 2002. Effect of fucoidan on fibroblast growth factor-2-induced angiogenesis in vitro // Thromb. Res. 106: Р. 213–221. DOI: 10.1016/s0049–3848(02)00136–6.

49. Mekinic I. G., Skroza D., Simat V., Hamed I., Cagalj M., Percovic Z. P. 2019. Phenolic Content of Brown Algae (Phaeophyceae) Species: Extraction, Identification, and Quantification // Biomolecules. Jun 22; 9(6): 244 р. DOI: 10.3390/biom9060244.

50. Nguyen P. H., Choi I.-W., Kim S.-K., Jung W. K. 2011. Immune regulatory effects of phlorotannins derived from marine brown algae (Phaeophyta) // Handbook of marine macroalgae: Biotechnology and Applied phycology. Chichester, U.K.: John Wiley & Sons. P. 340–343. DOI:10.1002/9781119977087.ch17.

51. Ragan M. A., Glombitza K. V. 1986. Phlorotannins, brown algal polyphenolics // Progress in Phycological Research, Bristol. V. 4. P. 129–241.

52. Richards C., Williams N. A., Fitton, J.H., Stringer D. N., Karpiniec S. S., Park A. Y. 2020. Oral fucoidan attenuates lung pathology and clinical signs in a severe influenza A mouse model // Mar Drugs. 18, 246. 10 р. DOI:10.3390/md18050246.

53. Rodriguez-Amaya D.B. 2001. A guide to carotenoid analysis in foods // Printed in the United States of America. 64 p.

54. Salvador N., Garreta A. G., Lavelli L., Ribera M. A. 2007. Antimicrobial activity of Iberian macroalgae // Sci. Mar. № 71. Р. 101–113. ISSN: 0214–8358.

55. Silva A., Rodrigues C., Garcia-Oliveira P., Lourenço-Lopes C., Silva S.A, Garcia-Perez P., Carvalho A. P., Domingues V. F., Barroso F., Delerue-Matos C., Simal-Gandara J., Prieto M. A. 2021. Screening of Bioactive Properties in Brown Algae from the Northwest Iberian Peninsula // Foods, 10, 1915. 15 р. DOI:10.3390/foods10081915.

56. Smit A. J. 2004. Medicinal and pharmaceutical uses of seaweed natural products: A review // J. Appl. Phycol. № 16. Р. 245-262. DOI:10.1023/B:JAPH.0000047783.36600.ef.

57. Thomas NV, Kim Se-K. 2011. Potential pharmacological applications of polyphenolic derivatives from marine brown algae // Environmental Toxicology and Pharmacology. V. 32. Is. 3. P. 325–335. DOI: 10.1016/j.etap.2011.09.004.


Review

For citations:


Podkorytova A.V., Roshchina A.N. Marine brown algae – perspective source of BAS for medical, pharmaceutical and food use. Trudy VNIRO. 2021;186:156-172. (In Russ.) https://doi.org/10.36038/2307-3497-2021-186-156-172



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-3497 (Print)

По вопросу подписки и приобретения номеров журналов просьба обращаться в ООО «Агентство «КНИГА-СЕРВИС» (т.:  495 – 680-90-88;  E-mail: public@akc.ru  Web: www.akc.ru).