Comparative analysis of interannual variability of water temperature on the surface of the southwestern part of the Barents Sea and on the Kola Section
https://doi.org/10.36038/2307-3497-2021-186-119-131
Abstract
Objective: to determine the area of the Barents Sea, the variability of which annual sea surface temperature (SST) has a high level of statistical correlation with that in the layers 0–50 and 0–200 m in the Kola Section, which crosses the flow of Atlantic waters of the Murmansk current.
Using methods: analysis of water temperature data for presence of trends, cyclic components, correlation and regression analysis, calculations of statistical characteristics were performed using MS Excel 2007 package. To study the frequency structure of interannual water temperature fluctuations, the spectral analysis implemented in the software package “AutoSignal” was used.
Novelty: The 1951–2017 data revealed a polygon in the southwestern part of the Barents Sea with coordinates 71–73° N and 31–33° E, where mean SST has a high correlation with sea water temperature of the 0–50 m layer on the Kola Section (r = 0.92). This allows the surface temperature to be used to estimate its interannual variability and to recover data gaps on the section.
Result: spectral compositions of water temperature variations of the Atlantic genesis water, obtained by different methods, have insignificant differences in all frequency ranges, that determines their close correlation. Over the considered 67-year time range in 90 % of cases SST anomalies on the identified polygon and average temperature in the 0–50 m layer on the Kola Section coincided by sign, and in 81 % of years their difference in absolute value is not exceed 0.3 °C. Since 1996, during the period of modern warming of sea waters during 22 years, the temperature deviations from the norms on the polygon and on section were only positive, and the difference of anomalies was less than 0.2 °C.
Practical significance: Using SST data in a selected section of the Barents Sea, it is possible to restore water temperature gaps in the Kola Section, analyze the features of its inter-annual variability and predict the dynamics of the sea climate.
About the Authors
V. D. BoitsovRussian Federation
Vladimir D. Boitsov
38 f. 2, Oktyabrskaya St., Veliky Novgorod, 173002
V. V. Guzenko
Russian Federation
Vladimir V. Guzenko
English embankment 42, Saint-Petersburg, 190000
References
1. Averkiev A. S., Bulaeva V. M., Gustoev D. V., Karpova I. P. 1997. Metodicheskie rekomendatsii po ispol’zovaniyu metoda sverkhdolgosrochnogo prognozirovaniya gidrometeorologicheskikh ehlementov (MSPGEH) i programmnogo kompleksa «Prizma» [Methodical recommendations on using the method of long-term forecasting of hydrometeorological elements (MSPGE) and the software «Prisma»]. Murmansk: Izd-vo PINRO. 40 s.
2. Alekseev G. V., Bulatov L. V., Zakharov V. F., Ivanov V. V. 1997. Postuplenie neobychno teplykh atlanticheskikh vod v Arkticheskij bassejn [Inflow of unusually warm Atlantic waters into the Arctic Basins] // Doklady RAN. T. 356. S. 401–403.
3. Alekseev G. V., Radionov V. F., Aleksandrov E. I., Ivanov N. E., Kharlanenkova N. E. 2015. Izmeneniya klimata Arktiki pri global’nom poteplenii [Arctic climate change under global warming] // Problemy Arktiki i Antarktiki. № 1 (103). S. 32–42.
4. Alekseev G. V., Pnyushkov A.V, Smirnov A.V, Vyazilova A. E., Glok N. I. 2019. Vliyanie pritoka iz Atlantiki na soderzhanie presnoj vody v verkhnem sloe Arkticheskogo bassejna [Influence of Atlantic inflow on the freshwater content in the upper layer of the Arctic basin] // Problemy Arktiki i Antarktiki. № 65 (4). S. 363–388.
5. Bojtsov V. D. 2006. Izmenchivost’ temperatury vody Barentseva morya i ee prognozirovanie [Variability of temperature in the Barents Sea and its forecasting]. Murmansk: Izd-vo PINRO. 292 s.
6. Bojtsov V. D. 2009. Izmenchivost’ temperatury vody Barentseva morya i ee vozdejstvie na bioticheskie komponenty ehkosistemy [Water temperature variability in the Barents Sea and its impact on biotic components of the ecosystem]. Avtoref. diss. … dok. geograf. nauk. SPb: RGGMU. 49 s.
7. Bojtsov V. D. 2012. Mezhgodovye kolebaniya gidrometeo rologicheskikh kharakteristik v Baren-tsevom more, Severnoj Atlantike i Severnom Ledovitom okeane i ikh sopryazhennost’ [Interannual variations in hydrometeorological characteristics in the Barents Sea, North Atlantic and Arctic Ocean and their conjugation] // Voprosy promyslovoj okeanologii. Vyp. 9, № 2. S. 61–95.
8. Bojtsov V. D. 2021. Dolgoperiodnaya izmenchivost’ temperatury poverkhnosti Severnogo i Baltijskogo morej v 1900–2020 gg. Gidrometeorologiya i ehkologiya [Long-term variability of the sea surface temperature (SST) in the North and Baltic Seas for the 1900–2020] // Uchenye zapiski RGGMU. № 63 S. 236–254. doi: 10.33933/2713–3001–2021–63-236–254
9. Bojtsov V. D., Karsakov A. L., Averkiev A. S., Gustoev D. V., Karpova I. P. 2010. Issledovanie izmenchivosti gidrofizicheskikh kharakteristik po nablyudeniyam na razreze «Kol’skij meridian» [Research of variability hydrophysical charakteristik on the «the Kola meridian» cross-section observations] // Uchenye zapiski RGGMU. № 15. S. 135–149.
10. Karsakov A. L., Trofimov A. G., Ivshin V. A., Antsiferov M. Yu., Gustoev D. V., Averkiev A. S. 2018. Vosstanovlenie dannykh po temperature vody na razreze «Kol’skij meridian» v 2016–2017 gg. [Restoration of data on water temperature in the Kola Section for 2016–2017] // Trudy VNIRO. T. 173. S. 193–206.
11. Latonin M. M., Bashmachnikov I. L., Bobylev L. P. 2020. Yavlenie arkticheskogo usileniya i ego dvizhushchie mekhanizmy [The Arctic Amplification Phenomenon and Its Driving Mechanisms] // Fundamental’naya i prikladnaya gidrofizika. T. 13, № 3. S. 3–19. doi: 10.7868/S2073667320030016.
12. Malinin V. N., Shmakova V. Yu. 2018. Izmenchivost’ ehnergoaktivnykh zon okeana v Severnoj Atlantike [Variability of the energy-active ocean zones in North Atlantic] // Fundamental’naya i prikladnaya klimatologiya. T. 4. S. 55–70. doi 10.21513/2410–8758–2018–4-55–70.
13. Mokhov I. I. 2015. Sovremennye izmeneniya klimata Arktiki [Modern climate changes in the Arctic] // Vestnik RAN. T. 85. № 5–6. S. 476–486.
14. Ozhigin V. K., Ivshin V. A., Trofimov A. G., Karsakov A L., Antsiferov M. Yu. 2016. Vody Barentseva morya: struktura, tsirkulyatsiya, izmenchivost’ [The Barents Sea Water: structure, circulation, variability]. Murmansk: PINRO. 260 s.
15. Rozhkova A. Yu., Dmitrienko I. A., Baukh D., Timokhov L. A. 2008. Izmenenie svojstv barentse-vomorskoj vetvi atlanticheskikh vod v kotlovine Nansena pod vliyaniem atmosfernoj tsirkulyatsii nad Barentsevym morem [Variations in characteristics of the Barents branch of the Atlantic water in the Nansen basin under the influence of atmospheric circulation over the Barents sea] // Doklady RAN. T. 418. № 3. S. 401–406.
16. Serykh I. V., Kostyanoj A. G. 2018. Klimaticheskie izmeneniya temperatury yugo-vostochnoj chasti Baltijskogo morya [Climatic changes in the temperature of the south-east parts of the Baltic Sea] // Trudy II Vseros. konf. «Gidrometeorologiya i ehkologiya: do-stizheniya i perspektivy razvitiya». SPb.: Khimizdat. S. 584–587.
17. Timokhov L. A., Frolov I. E., Kassens KH., Karpij V. Yu., Lebedev N. V., Malinovskij S. Yu., Polyakov I. V., Khelemann E. 2016. Izmeneniya termokhalinnykh kharakteristik transpolyarnoj sistemy Severnogo Ledovitogo okeana [Changes of termohaline characteristics of transpolar system of the Arctic ocean] // Problemy Arktiki i Antarktiki. 2 (108). S. 34–49.
18. Treshnikov A. F., Baranov G. I. 1972. Struktura tsirkulyatsii vod Arkticheskogo bassejna [Structure of the Arctic Basin water circulation]. L.: Gidrometeoizdat. 158 s.
19. Khajmina O. V., Bojtsov V. D., Karpova I. P. 2012. Vekovye kolebaniya klimata morej severo-zapada Rossii [Centuries of climate fluctuations in the seas of northwest Russia] // Uchenye zapiski RGGMU. № . 24. S. 62–74.
20. Bashmachnikov I. L., Yurova A. Y., Bobylev L. P., Vesman A. V. 2018. Seasonal and Interannual Variations of Heat Fluxes in the Barents Sea Region // Izvestiya Atmospheric and Ocean Physics . 54 (2). 213–222. doi 10.1134/S0001433818020032.
21. Belkin I. M. 2009. Rapid warming of large marine ecosystems // Progress in Oceanography. 81 (1). 207–213.
22. Boitsov V. D., Karsakov A. L., Trofimov A. G. 2012. Atlantic water temperature and climate in the Barents Sea, 2000–2009 // ICES J. Mar. Sci. 69 (5). 833–840. doi:10.1093/icesjms/fss075.
23. Gustafsson B. G., Schenk F., Blenckner T., Eilola K., Meier H. E.M., Müller-Karulis B., Neumann, T., Ruoho-Airola, T., Savchuk, O. P., Zorita, E. 2012. Reconstructing the development of Baltic Sea eutrophication 1850–2006 // Ambio. 41 (6). 534–548.
24. Hartmann D. L., Klein Tank. A.M.G., Rusticucci M., Alexander L. V., Brönnimann S., Charabi Y., Dentener F. J., Dlugokencky E. J., Easterling D. R., Kaplan A., Soden B. J., Thorne P. W., Wild M., Zhai P. M. 2013. Observations: Atmosphere and Surface // Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Stocker T. F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P. M. (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 159–254.
25. Huang B., Angel W., Boyer T., Cheng L., Chepurin G., Freeman E., Liu C., Zhang H.-M. 2018. Evaluating SST analyses with independent ocean profile observations // J. Climate. 31 (13). Pp. 5015–5030. doi:10.1175/JCLI-D-17–0824.1.
26. Lehmann A., Getzlaff K., Harlaß J. 2011. Detailed assessment of climate variability of the Baltic Sea area for the period 1958–2009 // Climate Research. 46. 185–196.
27. Loeng H., Ozhigin V., Aadlandsvik B. 1997. Water fluxes through the Barents Sea // ICES J. Mar. Sci. Vol. 54. P. 310–317.
28. Ozhigin, V.K., Trofimov, A.G., Ivshin, V.A. 2000. The Eastern Basin Water and currents in the Barents Sea // ICES Document CM. 2000/L:14. 19 p.
29. Ozhigin V. K., Ingvaldsen R. B., Loeng H., Boitsov V. D., Karsakov A. L. 2011. Introduction to the Barents Sea // The Barents Sea: ecosystem, resources, management. Half a century of Russian-Norwegian cooperation. Trondheim: Tapir Academic Press. P. 39–76.
30. Semenov V. A. 2008. Influence of oceanic inflow to the Barents Sea on climate variability in the Arctic region // Dokl. Earth Sc. 418 (1). 91–94. doi 10.1134/S1028334X08010200
31. Smedsrud L. H., Lars I., Ingvaldsen R. B., Eldevik T., Haugan P. M., Li Camille, Lien V. S., Olsen A., Omar A. M., Otterå O. H., Risebrobakken B., Sandø A. B., Semenov V. A., Sorokina S. A. 2013. The role of the Barents Sea in the Arctic climate system Reviews of Geophysics. 51(7):1–35. doi:10.1002/rog.20017.
32. Sutton R. T., Hodson D. L.R. 2005. Atlantic Ocean forcing of North American and European summer climate // Science. Vol.309, № 5731. 115–118.
33. Smith T. M., Reynolds R. W. 2003. Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997) // J. of Climate, 16, 1495–1510. doi: 10/1175/1520–0442–16.10.1495.
34. The Barents Sea: Ecosystem, Resources, Management. Halt a century Russian-Norwegion cooperation 2011. / Ed. T. Jakobsen, V. K. Ozhigin. Trondheim: Tapir Academik Press, 825 pp.
35. Users Guide by SeaSolve Software Inc. AutoSignal, 2003.
36. Yurova A. , Bobylev L. P. , Zhu Y. , Davy R. , Korzhikov A. Ya. 2018. Atmospheric heat advection in The Kara Sea region under main synoptic processes // Int. J. Climatol. 39 (1). Pp. 361-374. doi: 10.1002/joc.5811.
Review
For citations:
Boitsov V.D., Guzenko V.V. Comparative analysis of interannual variability of water temperature on the surface of the southwestern part of the Barents Sea and on the Kola Section. Trudy VNIRO. 2021;186:119-131. (In Russ.) https://doi.org/10.36038/2307-3497-2021-186-119-131