Experience and perspectives of small unmanned aerial vehicles application for marine coastal biological studies
https://doi.org/10.36038/2307-3497-2021-185-134-151
Abstract
Based on the results of own work and published research analysis it is shown that small UAVs can be used efficiently for cost-effective evaluation of fishes, mammals, benthic vegetation, IUU catches and landscape mapping. These devices enable point, sample and total surveys of marine areas. UAVs are well suited for integrated re search programs utilizing diverse methods. Small UAVs application enables significant savings of research time and expenditures. To achieve peak efficiency of drones it is necessary to account for their technical capabilities, constraints and vulnerabilities. Optimization of UAVs deployment to survey area is an important factor in in creasing their efficiency. Software for automatic flight mission execution allows to expand surveyed area and decrease accident rate. Software for automated photo grammetric processing of acquired aerial photography allows to minimize efforts for orthophotos production. Created orthophotos serve as a basis for aquatic species distribution mapping, abundance estimates and GIS visualization. Due to low cost and high functional characteristics modern consumer UAVs already can play a key role in marine coastal biological studies. Their importance as an instrument for such research programs will increase shortly along inevitable growth of their technical characteristics and decrease in price.
About the Authors
A. A. DuleninRussian Federation
Khabarovsk
P. A. Dulenina
Russian Federation
Khabarovsk
D. V. Kotsyuk
Russian Federation
Khabarovsk
V. V. Sviridov
Russian Federation
Khabarovsk
References
1. Bizikov V. A., Boltnev E. A., Petrov E. A., Peterfel’d V.A., Chernook V. I. 2019. Eksperimental’naya avias”yomka bajkal’skoj nerpy s ispol’zovaniem BPLA bol’shoj dal’nosti [Experimental aerial survey of the Baikal seal using long-range UAVs] // Trudy VNIRO. T. 175. S. 226-229.
2. Buzmakov A. S., Sannikov P. Yu., Andreev D. N. 2016. Podgotovka i primenenie materialov aerofotos”emki dlya izucheniya lesov [Preparation and applying the aerial photography for the forest studying] // Izvestiya Samarskogo nauchnogo centra RAN. T. 18. № 2 (2). S. 313–316.
3. Grachev A. I. 2000. Rezul’taty obsledovanij lezhbishch sivucha i morzha v Ohotskom, Beringovom i Chukotskom moryah v 1997 godu [Results of Steller sea lion and walrus rookeries observations in Okhotsk, Bering and Chukchi Seas in 1997] // Mat. Mezhd. konf: Morskie mlekopitayushchie Golarktiki. Arhangel’sk. S. 99–104.
4. Dronova N.A., Spiridonov V.A. 2008. Nezakonnyj, neuchtennyj i nereguliruemyj vylov tihookeanskih lososej na Kamchatke [Illegal, unreported and unregulated catches Pacific salmon in Kamchatka]. M.: Vsemirnyj fond dikoj prirody. 52 s. Dulenin A.A. 2016. O primenimosti vizual’nyh nablyudenij dlya ocenki obiliya makrofitov na primere sahariny yaponskoj severo-zapadnoj chasti Tatarskogo proliva [On applicability of visual observations for macrophyte
5. abundance estimation by example of Saccharina japonica at north-western Tatar Strait] // Prirodnye resursy, ih sovremennoe sostoyanie, ohrana, promyslovoe i tekhnicheskoe ispol’zovanie. Mat. VII Vseross. nauch.-prak. konf. s mezhd. uchastiem. Chast’ 1. (22–24 marta 2016 g.). Petropavlovsk-Kamchatskij. S. 80–84.
6. Dulenin A. A. 2017. Kompleksnyj podhod k organizacii pribrezhnyh rybohozyajstvennyh issledovanij v usloviyah sokrashcheniya ih finansirovaniya [Integrated approach to organizing coastal fisheries research in conditions of reduced funding] // Vodnye biologicheskie resursy Rossii: sostoyanie, monitoring, upravlenie. Sb. mat. Vseros. nauch. konf. s mezhd. uchastiem, posvyashchennoj 85 -letiyu KamchatNIRO (3–6 oktyabrya 2017 g., Petropavlovsk-Kamchatskij). Petropavlovsk-Kamchatskij: KamchatNIRO. S. 112–118.
7. Dulenin A. A. 2019. Raspredelenie vidov-dominantov makrofitov po glubine v severo-zapadnoj chasti Tatarskogo proliva [The depth distribution of dominant species of macrophytes in the northwestern part of Tatar Strait] // Biologiya morya. T. 45, № 2. S. 97–107.
8. Dulenin A.A., Kudrevskij O.A. 2019. Ispol’zovanie legkogo teleupravlyaemogo neobitaemogo podvodnogo apparata dlya morskih pribrezhnyh gidrobiologicheskih issledovanij [The use of lightweight remote operated vehicle for marine coastal hydrobiological investigations] // Vestnik KamchatGTU. № 48. S. 6–17.
9. Zaporozhets O.M., Zaporozhets G.V. 2017. Ispol’zovanie foto i videofiksacii dlya ocenki kolichestva proizvoditelej tihookeanskih lososej na nerestilishchah i putyah ih migracij: nekotorye metodicheskie podhody [Using the photo-and video records for assessment of Pacific salmon escapement on migration routes and spawning grounds: some methodical approaches] // Issledovaniya vodnyh biologicheskih resursov Kamchatki i severo-zapadnoj chasti Tihogo okeana. Vyp. 47. S. 77–90.
10. Zaporozhec O. M., Zaporozhec G. V., Fel’dman M.G. 2020. Ocenka chislennosti proizvoditelej nerki i ih raspredelenie po nerestovym staciyam v bassejne Nachikinskogo ozera (Kamchatka) v 2019 g. [Estimation of the number of sockeye salmon adults and their distribution by spawning stations in the basin of Lake Nachikinskoye (Kamchatka) in 2019] // Izvestiya TINRO. T. 200. Vyp. 3. S. 618–634.
11. Komanda NextGIS. 2019. Dokumentaciya NextGIS QGIS [NextGIS QGIS documentation]. Vypusk 17.0. 25–10-2019. 227. Accessible via: https://docs.nextgis.ru/_downloads/340c10edc4ee3eb26e18ef9398e87567/NextGISQGIS.pdf. 24.02.2021.
12. Korotaev A.A., Novopashin L.A. 2015. Primenenie bespilotnyh letatel’nyh apparatov dlya monitorirovaniya sel’skohozyajstvennyh ugodij i posevnyh ploshchadej v agrarnom sektore [Application of unmanned aerial vehicles for monitoring agricultural lands and cultivation areas in agrarian sector] // Agrarnyj vestnik Urala. T. 12. № 142. S. 38–42.
13. Meshchaninova E. G., Nikolyukina V. O. 2018. Perspektivy ispol’zovaniya BPLA pri osushchestvlenii zemel’nogo nadzora [Prospects for the use of UAVs in the implementation of the land supervision] // Ekonomika i ekologiya territorial’nyh obrazovanij. T.2. № 3. S. 122–128.
14. Postanovlenie Pravitel’stva Rossijskoj Federatsii ot 25.05.2019 № 658. 2019. Ob utverzhdenii Pravil ucheta bespilotnykh grazhdanskikh vozdushnykh sudov s maksimal’noj vzletnoj massoj ot 0,25 kilogramma do 30 kilogrammov, vvezennykh v Rossijskuyu Federatsiyu ili proizvedennykh v Rossijskoj Federatsii [The decree of the Government of the Russian Federation. 2019. On approval of the rules for accounting for unmanned civil aircraft with a maximum take-off weight from 0.25 kilograms to 30 kilograms imported into the Russian Federation or produced in the Russian Federation]. 8 s.
15. Sviridov V. V., Zolotuhin S. F. 2020. Metody GIS dlya inventarizacii nerestilishch tihookeanskih lososej r. Amur [GIS methods for inventory of pacific salmons spawning grounds in the Amur River] // Izvestiya TINRO. T. 200 № 3. S. 730–746.
16. Chelincev N. G., Goryaev Yu.I., Ezhov A. V., Makarevich P. R., Ishkulov D.G. 2017. Opyt ocenki chislennosti tyulenej metodom sudovogo transektnogo ucheta s primeneniem sektornoj ekstrapolyacii po rezul’tatam nablyudenij v yugo-zapadnoj chasti Karskogo morya v letnij period 2015 g [Experience abundance estimates by the ship transect accounting with pie extrapolations from observations in the south-western part of the Kara Sea in summer 2015] // Trudy VNIRO. T. 168. S. 117–124.
17. Agisoft. 2019. Rukovodstvo pol’zovatelya Agisoft Metashape Professional Edition, versiya 1.5 [User manual for Agisoft Metashape Professional Edition version 1.5]. Accessible via: https://www.agisoft.com/pdf/metashape-pro_1_5_ru.pdf. 20.01.2021.
18. Autel Robotics. 2020. User manual for Evo II Series. 74 p. Accessible via: https://www.autelpilot.com/blogs/support/autel-evo-ii-drone-user-manual. 15.02.2021.
19. Christie K.S., Gilbert S.L., Brown C.L., Hatfield M., Hanson L. 2016. Unmanned aircraft systems in wildlife research: current and future applications of a transformative technology // Frontiers in Ecology and the Environment. V. 14. Issue 5. P. 241–251.
20. DJI. 2018. Mavic 2 Pro/Zoom user manual. V. 1.4. 69 p. Accessible via: https://dl.djicdn.com/downloads/Mavic_2/Mavic+2+Pro+Zoom+User+Manual+V1.4.pdf. 15.02.2021.
21. DJI. 2021. DJI Mini 2. Руководство пользователя. Версия 1.2. 2021.02. 51 с. Accessible via: https://dl.djicdn.com/downloads/DJI_Mini_2/20210222/DJI_Mini_2_User_Manual_RU.pdf. 15.02.2021.
22. Goebel M.E., Perryman W.L., Hinke J.T., Krause D.J., Hann N.A., Gardner S., LeRoi D.J. 2015. A small unmanned aerial system for estimating abundance and size of Antarctic predators // Polar Biology. V. 38. P. 619–630.
23. Joyce K., Duce S., Leahy S., Leon J.X., Maier S. 2018. Principles and practice of acquiring drone based image data in marine environments // Mar. Freshw. Res. V. 70. P. 952-963.
24. Koski W.R., Gamage G., Davis A.R. , Mathews T., LeBlanc B., Ferguson S.H. 2015. Evaluation of UAS for photographic re-identification of bowhead whales, Balaena mysticetus // J. of Unmanned Vehicle Systems. V. 3. P. 22–29.
25. Litchi. 2021. User Guide. Accessible via: https://flylitchi.com/help. 24.02.2021.
26. Maselko J.M., Connor W.P. 2016. Testing unmanned aircraft systems for salmon spawning surveys // FACETS. V. 1. P. 187–204.
27. Merrill J, Pan Z, Mewes T, Herwitz S. 2013. Airborne hyperspectral imaging of seagrass and coral reef // AGU Fall Meeting, San Francisco, Dec. 9–13. Abstracts. V. 1. P. 1741.
28. Moreland E. E., Cameron M. F., Angliss R. P. , et al. 2015. Evaluation of a ship-based unoccupied aircraft system (UAS) for surveys of spotted and ribbon seals in the Bering Sea pack ice // J. of Unmanned Vehicle Systems. V. 3. 114–122.
29. Mulero-Pázmány M., Stolper R., van Essen L. D. , Negro J. J., Sassen T. 2014. Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa // PLoS ONE. V. 9 (1). P. 1–10.
30. Pomeroy P., O’Connor L., Davies P. 2015. Assessing use of and reaction to unmanned aerial systems in gray and harbor seals during breeding and molt in the UK // J. of Unmanned Vehicle Systems. V. 3. P. 102–113.
31. Sardà-Palomera F., Bota G., Padilla N., Brotons L. Sardà, F. 2017. Unmanned aircraft systems to unravel spatial and temporal factors affecting dynamics of colony formation and nesting success in birds // J. of Avian Biology. V. 48. P. 1273–1280.
32. Sheehan E., Rodriguez-Rodriguez D., Foster N., Nancollas S., Cousens S., Holmes L., Attrill M., Pettifer E., Jones I., Vaz S., Facq J.-V., Germain G. 2014. A comparative study of towed underwater video methodology to monitor benthic habitats in Marine Protected Areas. Ifremer, Sussex IFCA and Marine Institute for the Protected Area Network Across the Channel Ecosystem (PANACHE) project. INTERREG programme. 46 p.
33. Toonen H. M., Bush S. R. 2018. The digital frontiers of fisheries governance: fish attraction devices, drones and satellites // J. of Environmental Policy and Planning. V. 22 (1). P. 125–137.
34. Weissensteiner M. H., Poelstra J. W., Wolf J. B.W. 2015. Low-budget ready-to-fly unmanned aerial vehicles: an effective tool for evaluating the nesting status of canopy-breeding bird species // J. of Avian Biology. V. 46. P. 001–006.
35. Xu F, Gao Z, Jiang X, Shang W, Ning J, et al. 2018. A UAV and S2A data-based estimation of the initial biomass of green algae in the South Yellow Sea // Marine Pollution Bulletin. V. 128. P. 408–414.
Review
For citations:
Dulenin A.A., Dulenina P.A., Kotsyuk D.V., Sviridov V.V. Experience and perspectives of small unmanned aerial vehicles application for marine coastal biological studies. Trudy VNIRO. 2021;185:134-151. (In Russ.) https://doi.org/10.36038/2307-3497-2021-185-134-151