Preview

Trudy VNIRO

Advanced search

Video system for monitoring zooplankton and suspended particles

https://doi.org/10.36038/2307-3497-2021-184-149-158

Abstract

At present, the measurement of the vertical structure of the distribution of particulate matter is performed using labor-intensive methods using sampling with plankton nets or bathometers, followed by visual microscopic examination of samples in a laboratory. For real-time monitoring of water areas (ecological and fishery tasks), video recording of plankton and other particulate matter with real-time image transmission to the operator is relevant. Colored in situ images obtained from a ship using a probe on a carrying cable make it possible to quickly estimate the concentration of particles at the horizons, and visually select zoo and phytoplankton. An analysis of the currently existing equipment for recording plankton images is given, its shortcomings are indicated, and our own experience in the development and test results of the original video recording equipment created in this case is described. The design of a high-resolution submersible camera (2048x1436 pixels) with an original lighting system with rod lamps based on powerful white LEDs, an instantly recorded volume of 150 cubic centimeters, is described. Examples of registration of images of cultured freshwater daphnia in laboratory conditions are shown. The results of work with the camera in October 2019 at the Hydrobiological Station of A.N. Severtsov Institute of Ecology and Evolution (Lake Glubokoe, Ruzsky District of the Moscow Region) with obtaining color images of suspended matter to a depth of 30 m with simultaneous measurement of the temperature and concentration of oxygen dissolved in water are presented. By subsequent visual processing of the images obtained at different depths, an estimated profile of the distribution of zooplankton in depth was obtained. The result of research, laboratory and field tests was the creation of an operational monitoring video recording system that allows visual studies of plankton in situ; ways to improve the characteristics of the system are shown.

About the Authors

A. L. Olenin
P. P. Shirshov Institute of Oceanology RAS («SIO RAS»)
Russian Federation

Moscow



I. D. Badyukov
«EcoSky» LLC
Russian Federation

Moscow



N. M. Korovchinskij
A. N. Severtsov Institute of Ecology and Evolution RAS («SIEE RAS»)
Russian Federation

Moscow



E. A. Aistov
P. P. Shirshov Institute of Oceanology RAS («SIO RAS»)
Russian Federation

Moscow



References

1. Vinogradov M.E. (Red.) 1983. Sovremennye metody kolichestvennoj ocenki raspredeleniya morskogo planktona [Modern methods for quantifying the distribution of marine plankton] M.: Nauka, 279 s.

2. Dyomin V.V., Olenin A.L., Polovcev I.G., Kamenev D.V., Kozlova A.S., Ol’shukov A.S. 2018. Morskie ispytaniya cifrovogo golograficheskogo modulya s ispol’zovaniem izmeritel’no-tekhnologicheskoj platformy [Marine tests of a digital holographic module using a measuring and technological platform] // Okeanologiya. T. 58. № 5. S. 817–828.

3. Dyomin V.V., Ol’shukov A.S., Naumova E. Yu., Mel’nik N.G. 2008. Cifrovaya golografiya planktona [Digital holography of plankton] // Optika atmosfery i okeana. T. 64. № 12. S. 1089–1095.

4. Zadereev E.S., Tolomeev A.P. 2013 Sposob opredeleniya vertikal’nogo raspredeleniya i razmernoj struktury zooplanktona v vodoyome [Method for determining the vertical distribution and size structure of zooplankton in a reservoir]. Patent RF RU2495451 Byul. № 28.

5. Levashov D.E. 2003. Tekhnika ekspedicionnyh issledovanij: Instrumental’nye metody i tekhnicheskie sredstva ocenki promyslovo-znachimyh faktorov sredy [Technique of expeditionary research: Instrumental methods and technical means of assessing field-significant environmental factors] M.: Izd-vo VNIRO. 400 s.

6. Levashov D.E., Bulanova N.P. Podvodnyj videoregistrator planktona [Plankton Underwater Video Recorder]. Patent na poleznuyu model’ № RU148827 U1, priority 18.07.2014. Byul. № 35.

7. Smirnov G.V., Matishov G.G., Olenin A .L., Aistov E.A ., Grigorenko K.S., Stepanyan O.V. 2014. Morskie ispytaniya mnogokanal’noj izmeritel’no-tekhnologicheskoj platformy [Marine tests of a multichannel measuring and technological platform] // Vestnik YNC. T. 10. № 3. S. 54–60.

8. Smirnov G.V., Olenin A.L. 2015. Zond gidrologo-optikohimicheskij [Hydrological-optical-chemical probe]. Patent RF RU2551670, priority 19.08.2013. Byul. № 15.

9. Katz J., Sheng J. 2010. Application of Holography in Fluid Mechanics and Particle Dynamics // Annu. Rev. Fluid Mechanics. V. 42. P. 531–555.

10. Levashov D.E., Mikheychic P.A., Sedov A. Yu., Kantakov G.A., Voronkov A.P. 2004. Laser plankton meter TRAP‑7A, a new sensor for CTD probing // Sea Technology. 45 (2). 61–65.

11. Picheral M., Guidi L., Stemmann L., Karl D.M., Iddaoud G., Gorsky G. 2010. The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton // Limnol. Oceanogr.: Methods, 8, 462–473.


Review

For citations:


Olenin A.L., Badyukov I.D., Korovchinskij N.M., Aistov E.A. Video system for monitoring zooplankton and suspended particles. Trudy VNIRO. 2021;184:149-158. (In Russ.) https://doi.org/10.36038/2307-3497-2021-184-149-158



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-3497 (Print)

По вопросу подписки и приобретения номеров журналов просьба обращаться в ООО «Агентство «КНИГА-СЕРВИС» (т.:  495 – 680-90-88;  E-mail: public@akc.ru  Web: www.akc.ru).