The results of studies of metrological characteristics YSI CastAway-CTD profilograph
https://doi.org/10.36038/2307-3497-2021-184-125-139
Abstract
The results of laboratory experiments to study the metrological characteristics of the YSI CastAway-CTD profilograph are discussed. The factors determining the combined standard uncertainty (CSU) of the calibration of temperature and conductivity sensors are considered. Systematic deviations in CastAway-CTD sensor readings are determined and the temporal drift limits of their calibration characteristics are estimated. To eliminate the systematic effect in the temperature and conductivity data, correcting equations of the third order were used. Estimates of the expanded CSU after correcting the CTD data (the ranges: –1.6 ≤T≤ 30 °C and 27 ≤С≤ 57 mS/cm) did not exceed the values stated by the manufacturer. It is shown that the CastAway-CTD data is affected by the thermal inertia of its body (TIB), therefore TIB is an important metrological characteristic of the profilograph, which can distort the stratification of the studied water masses.
About the Authors
A. N. RamazinRussian Federation
Moscow
A. Yu. Lazaryuk
Russian Federation
Vladivostok
References
1. GOST R 54500.3–2011. Rukovodstvo ISO/MEK 98–3:2008. Neopredelennost’ izmereniya. CHast’ 3. Rukovodstvo po vyrazheniyu neopredelennosti izmereniya [Uncertainty of measurement. Part 3. Guide to the expression of uncertainty in measurement]. M.: Standartinform. 101 s. Accessible via: https://meganorm.ru/Index2/1/4293792/4293792084. 07.11.2019.
2. Arhipkin V.S., Lazaryuk A. Yu., Levashov D.E., Ramazin A.N. 2009. Okeanologiya: instrumental’nye metody izmereniya osnovnyh parametrov morskoj vody [Oceanology: instrumental methods for measuring the basic parameters of sea water]. M.: MAKS Press Moskva. 336 s.
3. Lazaryuk A. Yu. 2009. Dinamicheskaya korrekciya STDdannyh [Dynamic correction of CTD data] // Podvodnye issledovaniya i robototekhnika. № 2 (8). S. 59–71.
4. Pohodun A.I. 2006. Eksperimental’nye metody issledovanij. Pogreshnosti i neopredelennosti izmerenij. Uchebnoe posobie [Experimental research methods. Errors and measurement uncertainties]. SPb: SPbGU ITMO. 112 s.
5. Ramazin A.N. 2016. Nekotorye nauchno-metodicheskie aspekty metrologicheskogo obespecheniya izmerenij elektroprovodnosti i temperatury morskoj vody s pomoshch’yu STD-zondov [Some scientific and methodological aspects of metrological supply of conductivity and sea water temperature measurements with CTD-probes] // Trudy VNIRO. T. 159. S. 167–182.
6. Ramazin A.N. 2018. Ocenka neopredelyonnosti kalibrovki i izmerenij datchikov temperatury CTD-zondov «Sea Bird» [Evaluation of calibration and measurement uncertainty of temperature sensors of CTD-probe «Sea Bird»] // Sistemy kontrolya okruzhayushchej sredy. Sevastopol’: IPTS. Vyp.14 (34), S.33–42.
7. Ramazin A.N. 2021. Ocenka neopredelyonnosti kalibrovki etalonnoj yachejki elektroprovodimosti kalibratora ST01 «Idronaut» «Ustanovki dlya izmereniya UEP morskoj vody VNIRO» [Evaluation of calibration uncertainty reference conductivity cell of calibrator СT01«Idronaut» “Installations for measuring specific electrical conductivity of sea water VNIRO”] // Trudy VNIRO. T. 184. S. 99-111.
8. Ramazin A .N. , Levashov D. E. 2016. Metodicheskie rekomendacii po kalibrovke i metrologicheskomu obespecheniyu izmeritelej parametrov vodnoj sredy [Guidelines for calibration and metrological support of measuring instruments for the parameters of the aquatic environment]. M.: Izd-vo VNIRO. 127 s.
9. Rekomendacii po standartizacii R50.01.097–2014. 2015. Statisticheskie metody. Primery izmerenij pri analize povtoryaemosti i vosproizvodimosti [ISO/TR 12888:2011. Selected illustrations of gauge repeatability and reproducibility studies (IDT)] // M. Standartinform. 2015. 34 s.
10. A-8. Overview of Available. СastАway-CTD User’s Manual, 2010. Accessible via: https://www.fondriest.com/pdf/ysi_castaway_manual.pdf. 28.09.2019.
11. СastАway-CTD User’s Manual, 2010. Accessible via: http://www.xylemanalytics.com.au/media/pdfs/ysi-castawayctDprinciples-of-operation.pdf. 24.10.2019.
12. Fozdar F.M., Parker G.J., Imberger J. 1985. Matching temperature and conductivity sensor response characteristics // J. Physical Oceanography. V. 15, p. 1557–1569.
13. Giles A.B., McDougall T.J. 1986. Two methods for the reduction of salinity spiking of CTD’s // Deep-Sea Res. V. 33. № 9. P. 1253–1274.
14. IOC, SCOR and IAPSO, 2010. The international thermodynamic equation of seawater — 2010: Calculation and use of thermodynamic proper-ties. Intergovernmental Oceanographic Com-mission, Manuals and Guides 56, UNESCO (English), 196 pp. Accessible via: http://www.teos‑10.org/TEOS‑10_Manual.pdf. 20.08.2019.
15. Fofonoff N.P., Millard R.C. 1983. Algorithms for computation of fundamental properties of seawater, UNESCO technical papers in marine science 44, 53 pp.
16. Morison J., Andersen R., Larson N., D’Asaro E., Boyd T. 1994. The correction for thermal-lag effects in Sea-Bird CTD Data // J. Atmos. Oceanic Technol., 11, 1151–1164.
17. Trump C.L. 1983. Effects of ship’s roll on the quality of precision CTD data // Deep-Sea Res. V. 30. No. 11A. P. 1173–1183.
18. WGS84 Ellipsoid Gravity Formula, Department of Defense World Geodetic System 1984, NIMA TR8350.2, 3rd edition amendment 1, January 2000, Technical Report pages 3–5 to 4–2. Accessible via: http://earth-info.nga.mil/GandG/publications/tr8350.2/tr8350_2.htm. 24.10.2019.
19. UNESCO technical papers in marine science. 1988. UNESCO. V. 54. 94 p.
Review
For citations:
Ramazin A.N., Lazaryuk A.Yu. The results of studies of metrological characteristics YSI CastAway-CTD profilograph. Trudy VNIRO. 2021;184:125-139. (In Russ.) https://doi.org/10.36038/2307-3497-2021-184-125-139