The study of the acoustic target strength of Chub mackerel in the northwestern Pacific Ocean in situ
https://doi.org/10.36038/2307-3497-2021-184-73-86
Abstract
Significant concentrations of Chub mackerel (Scomber japonicas) were found in 2014 in the area of the Southern Kuril Islands (Northwestern Pacific Ocean (NWPO)). Commercial fishing for Chub mackerel was resumed in the NWPO in 2016. In this connection, exploratory work and acoustic-trawl surveys are carried out to identify distribution and abundance of Chub mackerel in the NWPO. Acoustic abundance estimates of the stock size of Chub mackerel is important for fishing. However, the reflectivity of Chub mackerel is not well understood. Collections of in situ target strength (TS) signals and corresponding fish size measurements for Chub mackerel were obtained as a result of research in the NWPO (2015–2017). The calibrated scientific echo-sounder “EK‑60 Simrad” with two split-beam echo sounders of respectively 38 and 120 kHz was used to collect sonar data. Measurement of the TS of Chub mackerel was conducted at the trawl layer, which corresponds to the trawl opening per the trawling area. The echogram selection process and the filtering process of single targets of Chub mackerel are realize in the “SALTSE” software package (“TINRO”). The dependence of mean target strength (TS, dB) on mean fish length (L, cm) for was estimated as 20 log (L) — 72,8 dB at 38 kHz and as 20 log (L) — 73,6 dB at 120 kHz. The obtained values backscattering strength (Sv) of Chub mackerel in the NWPO are compared with the values Sv of other studies of the reflective properties of Scombridae.
About the Authors
М. Yu. KuznetsovRussian Federation
Vladivostok
V. I. Polyanichko
Russian Federation
Vladivostok
E. V. Syrovatkin
Russian Federation
Vladivostok
I. A. Ubarchuk
Russian Federation
Vladivostok
References
1. Andreeva I.B. 1964. O rasseyanii zvuka gazovymi puzyryami ryb v glubokovodnykh zvukorasseivayushchikh sloyakh okeana [On the scattering of sound by gas bubbles of fish in deep-sea sound-scattering layers of the ocean] // Akusticheskij zhurnal. T. 10. № 1. S. 20–24.
2. Andreeva I.B. , Samovol’kin V.G. 1986. Rasseyanie akusticheskikh voln na morskikh organizmakh [Acoustic wave scattering on marine organisms]. M.: Agropromizdat. 102 s.
3. Goncharov S.M., Popov S.B., Bondarenko V.M., Mel’nik N.G., Smirnova N.S., KHanaev I.V. 2008. Izmerenie sily tseli bajkal’skogo omulya dlya povysheniya tochnosti otsenki ego zapasa v ozere Bajkal [Measuring the target strength of Baikal omul to increase the accuracy of estimating its stock in Baikal Lake] // Rybnoe khozyajstvo. № 3. S. 87–90.
4. Ermol’chev V. A. 2006. Rezul’taty issledovanij zavisimostej sily tseli ryb in situ ot dliny dlya treski, putassu i mojvy v Barentsevom i Norvezhskom moryakh [The results of study of equation between target strength and length of fish in situ for cod, blue whiting, capelin in the Barents and Norwegian Seas] // Rybnoe khozyajstvo. № 1. S. 92–96.
5. Kuznetsov M. Yu. 2013. Gidroakusticheskie metody i sredstva otsenki zapasov ryb i ikh promysla. Chast’ 1. Gidroakusticheskie sredstva i tekhnologii ikh ispol’zovaniya pri provedenii bioresursnykh issledovanij TINRO-Tsentra [Hydroacoustic methods and tools for fish stock assessment and fishery maintenance. Part 1. Hydroacoustic tools and technologies of their use in bioresource researches of TINRO-Center] // Izvestiya TINRO. T. 172. S. 20–51.
6. Kuznetsov M. Yu., Ubarchuk I.A. 2013. Formirovanie biblioteki tipovykh akusticheskikh izobrazhenij ryb Okhotskogo i Beringova morej (struktura i protsedura popolneniya) [Formation library of the acoustic typical images of fish of Okhotsk sea and Bering sea (structure and replenishment procedure)] // Izvestiya TINRO. T. 175. S. 182–193.
7. Kuznetsov M .Yu., Ubarchuk I .A . , Polyanichko V.I . , Syrovatkin E.V. 2021. Programmnyj kompleks dlya vizualizatsii, mnogovidovoj obrabotki i khraneniya dannykh gidroakusticheskikh resursnykh s”emok [The software complex for visualization, multiple-view processing and data storage of hydroacoustic resource surveys] // Trudy VNIRO. — T. 183. S. 174–190.
8. Mamylov V.S. 1999. Nekotorye aspekty otsenki plotnosti rybnykh skoplenij tralovo-akusticheskimi metodami [Some aspects of assessing the density of fish aggregations by trawl-acoustic methods] // Razvitie tekhnicheskikh metodov rybokhozyajstvennykh issledovanij. Murmansk: Izd-vo PINRO. S. 147–163.
9. Urik R.D. 1978. Osnovy gidroakustiki. L.: Sudostroenie. 448 s. (Urick, R.J. 1975. Principles of Underwater Sound, 2nd edn. New York: McGraw-Hill Book Company. 384 p.)
10. SHishkova E.V. 1977. Fizicheskie osnovy promyslovoj gidroakustiki. M.: Pishchevaya promyshlennost’ [Physical fundamentals of fisheries hydroacoustics]. 247 s.
11. Yudanov K.I. 1992. Gidroakusticheskaya razvedka ryby [Hydroacoustic exploration of fish]. SPb.: Sudostroenie. 186 s
12. Blaxter, J.H.S., Batty, R.S. 1990. Swimbladder behaviour and target strength // Rapp. P.-v. Reun. Cons. Int. Explor. Mer. V. 189. P. 233–244.
13. Charouki N., Svellingen I. K. 2008. Acoustic target strength of chub mackerel (Scomber japonicus) measured in situ using split beam acoustics // Symp. on Sci. and the Challenge of Managing Small Pelagic Fisheries on Shared Stocks in Northwest Africa. Casablanca, Morocco, 11–14 March 2008. Rome: FAO fisheries and aquaculture proc. P. 295–302.
14. Clay C.S., Heist B.G. 1984. Acoustic scattering by fish: acoustic models and a two-parameter fit // J. Acoustical Society of America. V. 75. P. 1077–1083.
15. Clay C.S., Horne J. K. 1994. Acoustic models of fish: the Atlantic cod (Gadus morhua) // J. Acoustical Society of America. V. 96. P. 1661–1668.
16. Conti S.G., Demer D.A., Soule M.A., Conti J.H. E. 2005. An improved multiple-frequency method for measuring in situ target strengths // ICES J. of Marine Science. V. 62. P. 1636–1646.
17. Demer D.A., Soule M.A., Hewitt R.P. 1999. A multifrequency method for improved accuracy and precision of in-situ target strength measurements // J. Acoustical Society of America. V. 105. P. 2359–2376.
18. Demer D.A., Berger L., Bernasconi M., Bethke E., Boswell K., Chu D., Domokos R., et al. 2015. Calibration of acoustic instruments. ICES Cooperative Research Report № . 326. P. 133.
19. Foote K.G. 1980. Averaging of fish target strength functions // J. Acoustical Society of America. V. 67. P. 504–515.
20. Foote K.G. 1985. Rather-high-frequency sound scattering by swimbladdered fish // J. Acoustical Society of America. V. 68. P. 688–700.
21. Foote K.G. 1987. Fish target strength for use in echo integrator surveys // J. Acoustical Society of America V. 82. P. 981–987.
22. Foote K.G. 1997. Target strength of fish. Encyclopedia of Acoustics. // Encyclopedia of acoustics. V. 1. New York: Wiley. P. 493–500.
23. Furusawa M. 1988. Prolate spheroidal models for predicting general trends of fish target strength // J. Acoustical Society of Japan (E). V. 9. P. 13–24.
24. Guttierez M., MacLennan D. 1998. Preliminary results of determination of in situ target strength of main pelagic species: Cruise of RV Humboldt 9803–05 from Tumbes to Tacna // Inf. Inst. Mar. Peru. V. 135. P. 16–19.
25. Jorgensen R. 2003. The effects of swimbladder size, condition and gonads on the acoustic target strength 351 of mature capelin // ICES J. of Marine Science. V. 60. P. 1056–1062.
26. Lee D.J., Shin H.H. 2005. Construction of a data bank for acoustic target strength with fish species, length and acoustic frequency for measuring fish size distribution // Korean J. Fisheries and Aquatic Sciences. V. 38. № 4. P265–275.
27. Liu J.M., Wu C.L., Chang Y. 2005. In situ target strength versus fork length relationships of Scomber japonicus and Scomber australasicus in waters off Northeastern Taiwan // J. Taiwan Fisheries Research. V. 13. № 2. P. 1–9.
28. Love R.H. 1971. Dorsal-aspect target strengths of an individual fish // J. Acoustical Society of America. V. 49. P. 816–823.
29. MacLennan D.N., Fernandes P.G., Dalen J. 2002. A consistent approach to definitions and symbols in fisheries acoustics // ICES J. of Marine Science. V. 59. P. 365–369.
30. Midttun L. 1984. Fish and other organisms as acoustic targets // Rapp. P.-v. Reun. Cons. Int. Explor. Mer. V. 184. P. 25–33.
31. Mukai T., Sano N., Iida K., Sasaki S. 1993. Studies on dorsal aspect target strength of ten species of fish collected in the East China Sea // Nippon Suisan Gakkaishi J.V. 59. P. 1515–1525.
32. Nakken O., Olsen K. 1977. Target strength measurements of fish // Rapp. P.-v. Reun. Cons. Int. Explor. Mer. V. 170. P. 52–69.
33. Ona E. 1990. Physiological factors causing natural variations in acoustic target strength of fish // J. Marine Biological Association of the United Kingdom. V. 70. P. 107–127.
34. Ona E . 1999. Methodology for Target Strength Measurements. ICES Cooperative Research Report № 235. P. 65.
35. Ona, E. 2001. Herring tilt angles, measured through target tracking. // Herring: Expectations For a New Millenium (eds F. Funk et al.). Anchorage: Alaska Sea Grant College Program. P. 509–520.
36. Ricker W.E. 1973. Linear regressions in fishery research // J. Fisheries Research Board of Canada. V. 30. P. 409–434.
37. Scoulding B., Gastauer S., MacLennan D.N, Fässler S. M.M., Copland P., Fernandes P. G. 2017. Effects of variable mean target strength on estimates of abundance: the case of Atlantic mackerel (Scomber scombrus) // ICES J. Marine Science. V. 74. № 3. P. 822–831.
38. Simmonds E.J., MacLennan D.N. 2005. Fisheries acoustics: theory and practice. Oxford, UK: Blackwell Science published. 437 p.
39. Soule M., Barange M., Hampton J. 1995. Evidence of bias in estimates of target strength obtained with a splitbeam echosounder // ICES J. of Marine Science. V. 52. P 139–144.
40. Svellingen I.K, Charouki N., Benchrifi S. 2008. Target strength of chub mackerel (Scomber japonicus) in Moroccan waters measured in situ // Symp. on Sci. and the Challenge of Managing Small Pelagic Fisheries on Shared Stocks in Northwest Africa. Presentation — Casablanca, Morocco, 11–14 March 2008. P. 16.
Review
For citations:
Kuznetsov М.Yu., Polyanichko V.I., Syrovatkin E.V., Ubarchuk I.A. The study of the acoustic target strength of Chub mackerel in the northwestern Pacific Ocean in situ. Trudy VNIRO. 2021;184:73-86. (In Russ.) https://doi.org/10.36038/2307-3497-2021-184-73-86