Preview

Trudy VNIRO

Advanced search

Role of physical processes in formation of spring phytoplankton bloom in the Bering Sea

https://doi.org/10.36038/2307-3497-2020-181-206-222

Abstract

The main part of the annual primary production in the Arctic and Subarctic zones of the World Ocean is formed during the spring phytoplankton bloom. The timing of the bloom depends on combination of physical factors. Oscillating control hypothesis, proposed in [Hunt et al., 2002] for the Eastern Bering Sea, describes annual peculiarities of ecosystem development related to conditions of the spring phytoplankton bloom. We review propositions of this hypothesis on the reasons of phytoplankton bloom and its connection with physical processes for four local regions of the Bering Sea shelf. The regions include western, northern and south-eastern parts of the shelf. The analysis is based on ocean color and microwave remotely sensed data as well as on atmospheric reanalysis. The results allow for hypothesis improvement. An early phytoplankton bloom may be present in the surface layer in April or May along the eastern Bering Sea shelf even in situations of early sea ice retreat (e. g. February-March) or absence of ice during winter. However, such combinations were not observed in the western Bering Sea shelf region. In 1998-2018, early ice retreat in the western shelf region was always accompanied by relatively late phytoplankton bloom. The temporal lag between sea ice retreat and phytoplankton bloom may be substantial in some years along the southernmost position of the ice edge. On the other hand, the spring bloom in the northern part of the shelf usually follows the ice retreat. In case of early ice retreat, the timing of the bloom is determined not only by wind conditions, but also by heat balance at the surface of the sea. The results are proposed to be used in further analysis of ecosystem dynamics of the western Bering Sea shelf.

About the Authors

K. K. Kivva
Russian Federal Research Institute of Fisheries and Oceanography (FSBSI «VNIRO»)
Russian Federation


J. V. Selivanova
Russian Federal Research Institute of Fisheries and Oceanography (FSBSI «VNIRO»); P.P. Shirshov Institute of Oceanology RAS (FSBIS «SIO RAS»)
Russian Federation


M. N. Pisareva
P.P. Shirshov Institute of Oceanology RAS (FSBIS «SIO RAS»)
Russian Federation


A. A. Sumkina
Russian Federal Research Institute of Fisheries and Oceanography (FSBSI «VNIRO»); M.V. Lomonosov Moscow State University (FSBEI HE «MSU»)
Russian Federation


References

1. Басюк Е.О., Зуенко Ю.И. 2019. Берингово море 2018 - экстремально малоледовитый и тёплый год // Известия ТИНРО. Т. 198. С. 119-142.

2. Гидрометеорология и гидрохимия морей. 1999. Проект «Моря». Т. 10: Берингово море, вып. 1: Гидрометеорологические условия. / отв. ред. Ф.С. Терзиев. СПб.: Гидрометеоиздат. 300 с.

3. Дружкова Е.И. 2018. Нанофитопланктон ледовой прикромочной зоны Баренцева моря в летний период 2017 года // Труды КНЦ РАН. Сер. Океанология. Т. 4(9). Вып. 5. С. 29-44.

4. Кивва К.К., Селиванова Ю.В., Сумкина А. А., Писарева М.Н. 2020. Изменчивость сроков схода льда в Беринговом и Чукотском морях // Компл. иссл. Мирового океана. Мат. V Всерос. науч. конф. молодых учёных, г. Калининград, 18-22 мая г. [Электронный ресурс]. Калининград: АО ИО РАН. С. 83-84.

5. Котенёв Б.Н., Булатов О. А., Кровнин А. С. 2019. Перспективы отечественного рыболовства до 2035 года в условиях меняющегося климата // Вопросы рыболовства. Т. 20. №. 4. С. 395-435.

6. Котенёв Б.Н., Кровнин А. С., Мордасова Н.В., Мурый Г.П. 2013. О влиянии крупномасштабной изменчивости атмосферы-океана на урожайность поколений трески Баренцева моря // Вопросы промысловой океанологии. Вып. 10. С. 26-65.

7. Котенёв Б.Н., Кровнин А.С., Масленников В.В., Мордасова Н.В. 2014. О будущем состоянии популяций массовых гидробионтов в биопродуктивных районах Мирового океана // Труды ВНИРО. Т. 152. С. 209-248.

8. Котёнев Б.Н, Кровнин А. С, Масленников В.В., Мордасова Н.В., Мурый Г.П. 2017. Перспективы развития мирового рыболовства в связи с изменением климата // Учёные записки РГГМУ. № 48. С. 167-185.

9. Кровнин А.С., Котёнев Б.Н., Кловач Н.В. 2016. Связь «лососевых эпох» в дальневосточном регионе с крупномасштабными изменениями климата в Северной Пацифике // Труды ВНИРО. Т. 164. С. 22-40.

10. Кровнин А.С., Мельников С.П., Артёменков Д.В., Мурый Г. П., Никитенко А.И. 2018. Влияние крупномасштабных климатических факторов на динамику запаса тихоокеанской сайры // Труды ВНИРО. Т. 173. С. 66-78.

11. Лебедев В.Л. 1984. Формирование географической зональности в водах Мирового океана (с позиций физики) // Вопросы географии. № 125. С. 25-35.

12. Лучин В.А. 2019. Средние многолетние параметры верхнего квазиоднородного слоя Берингова моря (нижняя граница, температура, солёность) и их внутригодовая изменчивость // Известия ТИН-РО. Т. 199. С. 214-230.

13. Шунтов В.П. 2017. Об упрощённых трактовках лимитирующих факторов и динамики численности некоторых промысловых рыб дальневосточных вод // Известия ТИНРО. Т. 189. С. 35-51.

14. Baker M.R., Kivva K.K., Pisareva M.N., Watson J. T., Selivanova J. 2020. Shifts in the physical environment in the Pacific Arctic and implications for ecological timing and conditions // Deep Sea Res. Part II: Topical Studies in Oceanography. (In press).

15. Baumann M.S., Moran S.B., Lomas M. W., Kelly R.P., Bell D. W., Krause J. W. 2014. Diatom control of the autotrophic community and particle export in the eastern Bering Sea during the recent cold years (20082010) // J. of Marine Res. V. 72. №. 6. P. 405-444.

16. Behrenfeld M. J., Boss E. S. 2014. Resurrecting the ecological underpinnings of ocean plankton blooms // Annual Review of Marine Science. V. 6. P. 167-94.

17. Boetius A., Albrecht S., Bakker K., Bienhold C., Felden J., Fernandez-Mendez M., Hendricks S., Katlein C., Lalande C., Krumpen T., Nicolaus M. 2013. Export of algal biomass from the melting Arctic sea ice // Science. V. 339(6126). P. 1430-1432.

18. Coyle K. O., Eisner L.B., Mueter F. J., Pinchuk A.I., Janout M.A., Cieciel K.D., Farley E. V., Andrews A. G. 2011. Climate change in the southeastern Bering Sea: impacts on pollock stocks and implications for the oscillating control hypothesis // Fisheries Oceanography. Т. 20. №. 2. С. 139-156.

19. ERA5 hourly data on single levels from 1979 to present. Accessible via: https://cds.climate.copernicus. eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview. 10.07.2020.

20. Friedland K.D., Mouw C.B., Asch R. G., Ferreira A.S.A., Henson S., Hyde K.J., Morse R.E., Thomas A. C., Brady D.C. 2018. Phenology and time series trends of the dominant seasonal phytoplankton bloom across global scales // Global Ecology and Biogeography. V. 27(5). P. 551-569.

21. Giovanni online data system. NASA GES DISK. Accessible via: https://giovanni.gsfc.nasa.gov. 10.07.2020.

22. Grebmeier J.M., McRoy C.P., Feder H.M. 1988. Pelagic-benthic coupling on the shelf of the northern Bering and Chukchi seas. I. Food supply source and benthic biomass // Marine ecology progress series. V. 48(1). P. 57-67.

23. Hersbach H., Bell B., Berrisford P., Hirahara S., Horanyi A., Munoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A. 2020. The ERA5 global reanalysis // Quarterly Journal of the Royal Meteorological Society. (In press).

24. Huisman J., Arrayas M., Ebert U., Sommeijer B. 2002. How do sinking phytoplankton species manage to persist? // The American Naturalist. V. 159. №. 3. P. 245-254.

25. Huisman J.E.F., van Oostveen P., Weissing F.J. 1999. Critical depth and critical turbulence: two different mechanisms for the development of phytoplankton blooms // Limnology and oceanography. V. 44. №. 7. P. 1781-1787.

26. Hunt Jr. G.L., Stabeno P., Walters G., Sinclair E., Brodeur R. D., Napp J. M., Bond N. A. 2002. Climate change and control of the southeastern Bering Sea pelagic ecosystem. // Deep Sea Res. Part II: Topical Studies in Oceanography. V. 49 P. 5821-5853.

27. Hunt Jr. G.L., Coyle K.O., Eisner L.B., Farley E.V., Heintz R. A., Mueter F., Napp J.M., Overland J.E., Ressler P.H., Salo S., Stabeno P.J. 2011. Climate impacts on eastern Bering Sea food webs: A synthesis of new data and an assessment of the Oscillating Control Hypothesis // ICES J. of Marine Science. V. 68(6). P. 1230-1243.

28. Iida T., Saitoh S.I. 2007. Temporal and spatial variability of chlorophyll concentrations in the Bering Sea using empirical orthogonal function (EOF) analysis of remote sensing data // Deep Sea Res. Part II: Topical Studies in Oceanography. V. 54. P. 2657-2671.

29. Jin M., Deal C.J., Wang J., Tanaka N., Ikeda M. 2006. Vertical mixing effects on the phytoplankton bloom in the southeastern Bering Sea midshelf // J. of Geophysical Research: Oceans. V. 111. № C3.

30. Lalande C., Grebmeier J.M., Hopcroft R.R., Danielson S. L. 2020. Annual cycle of export fluxes of biogenic matter near Hanna Shoal in the northeast Chukchi Sea // Deep Sea Res. Part II: Topical Studies in Oceanography. (In press).

31. Legendre L., Ackley S.F., Dieckmann G.S., Gulliksen B., Horner R., Hoshiai T., Melnikov I.A., Reeburgh W.S., Spindler M., Sullivan C. W. 1992. Ecology of sea ice biota // Polar biology. V. 12. №. 3-4. P. 429-444.

32. Meier W.N., Fetterer F., Savoie M., Mallory S., Duerr R., Stroeve J. 2017. NOAA/NSIDC Climate Data Recordof Passive Microwave Sea Ice Concentration, Version 3 // Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. DOI: https://doi.org/10.7265/ N59P2ZTG

33. Mollmann C., Diekmann R. 2012. Marine ecosystem regime shifts induced by climate and overfishing: a review for the Northern Hemisphere // Advances in Ecological Research. V. 47. P. 303-347.

34. Niebauer H.J., Alexander V., Henrichs S.M. 1995. A timeseries study of the spring bloom at the Bering Sea ice edge I. Physical processes, chlorophyll and nutrient chemistry // Continental Shelf Research. V. 15. № 15. P. 1859-1877.

35. Peng G., Steele M., Bliss A., Meier W. Dickinson S. 2018. Temporal Means and Variability of Arctic Sea Ice Melt and Freeze Season Climate Indicators Using a Satellite Climate Data Record // Remote Sensing. V. 10(9). № 1328.

36. Renner M., Salo S., Eisner L.B., Ressler P.H., Ladd C., Kuletz K. J., Santora J. A., Piatt J. F., Drew G. S., Hunt Jr G. L. 2016. Timing of ice retreat alters seabird abundances and distributions in the southeast Bering Sea // Biology Letters. V. 12. №. 9. P. 20160276.

37. Sigler M.F., Stabeno P. J., Eisner L.B., Napp J.M., Mueter F. J. 2014. Spring and fall phytoplankton blooms in a productive subarctic ecosystem, the eastern Bering Sea, during 1995-2011 // Deep-Sea Research Part II: Topical Studies in Oceanography. V. 109. P. 71-83.

38. Sigler M.F., Napp, J.M., Stabeno P.J., Heintz R. A., Lomas M. W., Hunt Jr G. L. 2016. Variation in annual production of copepods, euphausiids, and juvenile walleye pollock in the southeastern Bering Sea // Deep Sea Res. Part II: Topical Studies in Oceanography. V. 134. P. 223-234.

39. Stabeno P. J., Bond N. A., Kachel N. B., Salo S. A., Schumacher J. D. 2001. On the temporal variability of the physical environment over the southeastern Bering Sea // Fisheries Oceanography. V. 10. № 1. P. 81-98.

40. Stabeno P. J., Kachel N. B., Moore S. E., Napp J. M., Sigler M., Yamaguchi A., Zerbini A.N. 2012. Comparison of warm and cold years on the southeastern Bering Sea shelf and some implications for the ecosystem // Deep Sea Res. Part II: Topical Studies in Oceanography. V. 65. P. 31-45.

41. Sukhanova I.N., Flint M.V., Pautova L.A., Stockwell D.A, Grebmeier J.M., Sergeeva V.M. 2009. Phytoplankton of the western Arctic in the spring and summer of 2002: Structure and seasonal changes // Deep Sea Res. Part II: Topical Studies in Oceanography. V. 56. № 17. P. 1223-1236.

42. Sverdrup H. U. 1953. On conditions for the vernal blooming of phytoplankton // J. du Conseil / Conseil Permanent International pour l’Exploration de la Mer. V. 18(3). P. 287-295.

43. Szymanski A., Gradinger R. 2016. The diversity, abundance and fate of ice algae and phytoplankton in the Bering Sea // Polar Biology. V. 39. № 2. P. 309-325.


Review

For citations:


Kivva K.K., Selivanova J.V., Pisareva M.N., Sumkina A.A. Role of physical processes in formation of spring phytoplankton bloom in the Bering Sea. Trudy VNIRO. 2020;181:206-222. (In Russ.) https://doi.org/10.36038/2307-3497-2020-181-206-222



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2307-3497 (Print)

По вопросу подписки и приобретения номеров журналов просьба обращаться в ООО «Агентство «КНИГА-СЕРВИС» (т.:  495 – 680-90-88;  E-mail: public@akc.ru  Web: www.akc.ru).