

УДК 330.15

Экономика, международное сотрудничество и нормативные правовые основы рыбохозяйственной деятельности

Исследование тенденций изменения объёмов потребления рыбной продукции в Китае с точки зрения повышения уровня потребления

Чжан Ичжо¹, Ян Цзыцзян¹, Юань Сяоцзе¹, Сюй Лэцзюнь¹

- ¹ Китайская академия рыбохозяйственных наук ул. Цинта, д 150, Пекин, 100141, Китай
- 2 Экономико-управленческий факультет Шанхайского океанического университета, ул. Лученхуань, д. 999, Шанхай, 201306, Китай E-mail: international@cafs.ac.cn

Для точного формирования мер, направленных на высококачественное развитие рыбной отрасли, а также на согласование структурных реформ со стороны предложения с расширением внутреннего спроса на рыбную продукцию, в настоящем исследовании на основе официального Руководства по питанию для населения Китая проанализировано текущее состояние потребления рыбной продукции в Китае и выполнен прогноз её дальнейших изменений. Результаты показывают, что структура потребления рыбной продукции постоянно совершенствуется, при этом увеличивается доля потребления видов с высокой экономической ценностью. По прогнозам, к 2035 году объёмы потребления рыбной продукции в Китае могут превысить 35 млнов тонн. Исследование демонстрирует, что для удовлетворения растущего спроса на повышение уровня потребления рыбной продукции необходимо сосредоточить усилия на следующих направлениях:

- 1. использование обширных водных ресурсов для увеличения производства пищевой продукции и расширения каналов поставок рыбной продукции;
- 2. активное развитие выращивания высокоэкономичных видов рыб и водных биоресурсов с целью повышения производственных мощностей;
- 3. усиление научно-технической поддержки и модернизация оборудования в рыбной отрасли, способствующие устойчивому «зелёному» развитию рыболовства.

Данное исследование может служить информационной базой для органов управления рыбным хозяйством при разработке соответствующих мер политики. Формирование концепции комплексного продовольственного обеспечения, с учётом тенденций рынка рыбной продукции, позволит заранее планировать развитие и создавать диверсифицированную систему продовольственного обеспечения. Совместное воздействие на спрос и предложение будет способствовать высококачественному развитию отрасли.

Ключевые слова: повышение уровня потребления рыбной продукции; прогноз тенденций; высококачественное развитие рыбного хозяйства; меры по адаптации.

Research on the consumption trend changes of aquatic products in China from the perspective of consumption upgrading

Zhang Yizhuo¹, Yang Zijiang¹, Yuan Xiaojie², Xu Lejun¹

- ¹ Chinese Academy of Fishery Sciences, Oingta W Rd 150, Beijing, 100141, China
- ² College of Economics and Management, Shanghai Ocean University, Luchenghuan rd. 999 Shanghai, 201306, China

In order to implement precise policies to promote the high-quality development of fisheries, better coordinate the structural reform of the supply side of fisheries and expand the domestic demand for aquatic products. Based on the official data of dietary guidelines for Chinese residents, the present situation and future trend of consumption of aquatic products in China are analyzed in this paper. The results show that the consumption structure of aquatic products in China is continuously optimized, and the proportion of high economic aquatic products consumption is increased, and the consumption of aquatic products in China is expected to exceed 35 million tons by 2035. The research shows that the following work should be carried out to meet the demand of upgrading aquatic products consumption in China in the future. (1) To expand the supply channels of aquatic products by asking for food from large surface resources. (2) Vigorously develop aquaculture varieties of high economic value and enhance the supply capacity. (3) Strengthen the support of fishery technology and equipment, and promote the green development of fishery. This study can provide relevant data support for fishery authorities to implement policies, establish a big food concept, plan and layout in advance according to the future market trends of aquatic products, build a diversified food supply system, and promote the high-quality development of fisheries through both supply and demand.

Keywords: aquatic products consumption upgrading; trend prediction; high-quality development of fisheries; countermeasures.

© Автор(ы), 2025

消费升级视角下我国水产品消费量变化趋势研究

中国渔业经济, 2024年第4期 第42卷,106-121页 张溢卓¹, 杨子江¹, 袁晓杰²,徐乐俊¹ (¹. 中国水产科学研究院, 北京 100141;

2. 上海海洋大学 经济管理学院, 上海 201306)

摘要:为精准施策推动渔业高质量发展,更好统筹渔业供给侧结构性改革和扩大水产品内需,本文以中国居民膳食指南官方数据为依据,分析我国水产品消费现状并对未来趋势进行预测。结果显示,我国水产品消费结构不断优化,高经济性水产品消费占比提高,预测2035年我国居民水产品消费量有望超过3500万吨。研究表明,未来满足我国水产品消费升级需求应重点开展以下工作:(1)向大水面资源要食物,拓宽水产品供给渠道;(2)大力发展高经济价值水产品养殖品种,增强供给能力;(3)强化渔业科技和装备支撑,推进渔业绿色发展。本研究可为渔业主管部门施策提供相关数据支撑;树立大食物观,结合未来水产品市场动向提前规划布局,构建多元化食物供给体系,供给需求双发力推动渔业高质量发展。

关键词:水产品消费升级;趋势预测;渔业高质量发展;应对措施

中图分类号:F326.406 文献标识码:A 文章编号:1009-(2024)04-0106-10

ВВЕДЕНИЕ

Руководство по питанию для населения Китая 2022 года указывает, что в настоящее время основным источником животного белка в Китае является мясо крупного рогатого скота и свинина, и необходимо скорректировать соотношение между мясом и рыбной продукцией. Для взрослых рекомендованный суточный объём потребления как рыбной продукции, так и мяса птицы и других животных составляет 40-75 г (в расчёте на съедобную часть продукта). При условии выхода съедобных частей рыбной продукции в среднем 54,5%, это соответствует ежедневному потреблению свежей рыбной продукции на уровне 73,39-137,61 г на человека, что в годовом исчислении составляет 26,79-50,23 кг/чел., при этом медианное значение - 38,51 кг/чел. Для обеспечения сбалансированного питания и удовлетворения потребностей организма в питательных веществах необходимо достигать именно этих показателей.

Согласно данным исследований, в 2022 году среднегодовое потребление рыбной продукции на душу населения в Китае составило 34,27 кг: у городских жителей – 39,93 кг, у сельских – 26,38 кг [Ли и др., 2024]. Из сравнения следует, что городское население в среднем достигло медианных значений, рекомендованных диетическими нормами, тогда как сельское население значительно отстаёт и даже не достигает минимальных нормативов. Это указывает на значительный потенциал для роста потребления рыбной продукции в стране и необходимость увеличения доли качественного белка из рыбной продукции.

Как в Китае, так и за рубежом было проведено множество исследований, посвящённых потреблению рыбной продукции населением. Зарубежные учёные

чаще фокусируются на частоте потребления, факторах влияния и связи с питательной ценностью и здоровьем. Например, С. Hoerterer с коллегами [2022]. анализируя связь между потреблением рыбной продукции и социальными факторами (возрастом, полом, уровнем образования), установили, что женщины потребляют рыбную продукцию реже мужчин, а частота потребления положительно коррелирует с возрастом и образованием. Что касается факторов, влияющих на потребление, исследования на базе опросных данных выявляют связь с культурными предпочтениями, религиозными убеждениями и потребительскими привычками [Birch, Lawley, 2012; Jacobs et al., 2015; Carlucci et al., 2015]. В аспекте здоровья N. Boase с коллегами [2019] подчёркивают, что миллиарды людей зависят от рыбной продукции как основного источника белка, а сама продукция обладает уникальной питательной ценностью и благотворно влияет на здоровье человека. Z. Pieniak и соавторами [2010] выделили четыре группы потребителей: не уделяющие внимания здоровому питанию, стремящиеся к здоровому образу жизни, чрезмерно озабоченные здоровьем и имеющие низкий уровень требований к здоровью.

Китайские учёные в основном анализируют потребление рыбной продукции с точки зрения её питательной ценности, соотношения спроса и предложения, факторов влияния, анализа потребительских намерений и моделей, а также перспектив развития, накопив значительные результаты в данных направлениях.

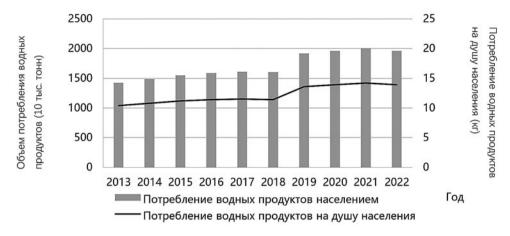
Во-первых, по питательной ценности. Рыбная продукция играет важную роль в обеспечении продовольственной безопасности страны и здоровья населения, способствуя трансформации аграрной и продовольственной систем и обеспечивая доступное по

стоимости здоровое питание [The state of world ..., 2022]. Чжао Юн и коллеги [2021] системно описали преимущества и полезные свойства рыбной продукции с точки зрения питательных веществ и медицинских аспектов, а также рассмотрели вопросы научного использования рыбной продукции для корректировки рациона населения и разработки морских оздоровительных продуктов.

Во-вторых, по соотношению спроса и предложения. Сунь Чэнь [2000], исследуя структуру потребления рыбной продукции и баланс рынка, отметил дисбаланс как по объёмам, так и по регионам на рынке рыбной продукции Китая. Ли Жуйци [2018], рассматривая спрос и предложение рыбной продукции, отметил, что потребители могут удовлетворить свой спрос на рыбную продукцию за счёт предложения, и предложил рекомендации по реформированию предложения рыбной продукции в новых условиях.

В-третьих, по факторам влияния. Учёные отмечают, что экономические, социальные и культурные факторы существенно влияют на объёмы потребления рыбной продукции [Тан, Чжан, 2005; Сунь, Лу, 2007; Ху, Ван, 2009]. Ма Цзюньи с коллегами [2018] провели выборочное исследование потребителей сети супермаркетов Hema Fresh, выявив связь новых моделей потребления с полом, возрастом и доходом потребителей, а также предложили меры по развитию новых моделей потребления рыбной продукции.

В-четвертых, по анализу намерений и моделей. Чжун Жуйюй с соавторами [2020], изучая каналы сбыта и другие этапы распределения, исследовали предложение рыбной продукции в провинции Гуандун, применяя методы анализа литературы и SWOT-анализ. Результаты показали, что в последние годы объёмы продаж свежей рыбной продукции через электронную коммерцию успешно растут, способствуя расширению потенциала спроса и развитию цепочки поставок. В связи с этим была рекомендована дальнейшая государственная поддержка в области регулирования отрасли, контроля качества и рисков, а также стимулирование развития сектора электронной коммерции свежей рыбной продукции.


Коллектив авторов во главе с Хань Сяо и др. [2015] исследуя особенности онлайн-покупок свежей рыбной продукции потребителями в регионах Цзянсу, Чжэцзян и Шанхае, выявили, что 84,4% опрошенных осуществляют онлайн-покупки свежей рыбной продукции не реже одного раза в две недели. Основные торговые площадки распределились следующим образом: SF Express (19,10%), Tmall (Miaoxiansheng) (19,00%), Yihaodian Fresh (13,30%), COFCO Womai (12,30%), JD Fresh (9,80%) и другие.

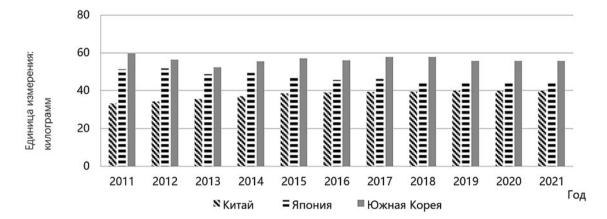
В-пятых, по перспективам развития. Чэнь Ци и Хань Лимин [2016], исходя из данных о потреблении рыбной продукции в домашних хозяйствах, создали многомерную модель серого прогнозирования МGM (1, N), применённую для анализа тенденций потребления рыбной продукции. Лу Чанцай [2022] считает, что рыбная продукция является важным компонентом рациона питания и в рамках концепции комплексного продовольственного обеспечения обладает потенциалом для расширения возможностей предложения.

Исследования вышеназванных учёных оказывают важную теоретическую поддержку развитию рыбной промышленности. Однако исследований, посвящённых отслеживанию тенденций повышения уровня потребления рыбной продукции в Китае, сравнительно немного. С момента начала реализации 14-й пятилетки председатель Си Цзиньпинь выдвинул новые требования по контролю за изменениями структуры питания населения. В связи с этим в настоящей статье поставлена задача чётко определить текущую ситуацию с потреблением рыбной продукции в стране, количественно оценить показатели потребления среди населения, обосновать процесс постоянного улучшения структуры потребления, а также спрогнозировать объёмы потребления рыбной продукции на период 14-й, 15-й пятилеток и на более длительный срок и предложить соответствующие меры и рекомендации по адаптации.

I. АНАЛИЗ ТЕКУЩЕГО СОСТОЯНИЯ ПОТРЕБЛЕНИЯ РЫБНОЙ ПРОДУКЦИИ ЖИТЕЛЯМИ КИТАЯ

За более чем 70 лет с момента основания Китайской Народной Республики рыболовная отрасль Китая достигла значительных успехов, признанных как внутри страны, так и на международном уровне, и занимает лидирующие позиции по ряду показателей. В частности, в области производства рыбной продукции Китай на протяжении 34 лет, по состоянию на конец 2023 года, удерживает первое место в мире. В сфере торговли рыбной продукцией страна занимает лидирующую позицию уже более 20 лет: в 2022 году общий объём импорта и экспорта составил 10,2328 млн тонн. Что касается численности населения, занятого в рыболовстве, в 2022 году она достигла 16,1945 млн человек, что превышает численность населения таких стран, как Швеция, Греция, Куба или Бельгия [Статистический ежегодник ..., 2022]. Развитие рыболовной отрасли значительно способствовало росту потребления рыбной продукции в Китае (рис. 1).

Рис. 1. Динамика потребления съедобной части рыбной продукции населением Китая. Источник: Национальное бюро статистики


Fig. 1. Dynamics of consumption of edible fish products by the Chinese population. Source: National Bureau of Statistics

1. Быстрый рост объёмов потребления

В отношении потребления рыбной продукции Национальное бюро статистики Китая ежегодно публикует данные о «среднем потреблении на душу населения в домашних хозяйствах», основанные на выборочных опросах домохозяйств. Эти данные отражают количество рыбной продукции, потребляемой в домашних условиях. Однако значительная часть рыбной продукции потребляется вне дома – в ресторанах, гостиницах, столовых и других местах общественного питания, поэтому данные о потреблении в домашних хозяйствах отражают лишь часть реального потребления и не дают полной картины.

Кроме того, Продовольственная и сельскохозяйственная организация ООН (FAO) также публикует данные о потреблении рыбной продукции в разных странах. Однако важно отметить, что статистика Китая и FAO различается. Данные FAO в основном учитывают объёмы производства и торговли рыбной продукцией за текущий год, не принимая во внимание непищевое использование и другие факторы. Различия в источниках данных, системах статистических показателей и экономических системах приводят к значительным расхождениям между данными FAO и реальной ситуацией. Тем не менее, эти данные сохраняют ценность для сравнительного анализа между странами и для оценки динамики потребления внутри одной страны.

Согласно данным FAO, при сравнении с другими странами Восточной Азии – Японией и Южной Кореей – потребление рыбной продукции в Китае уступает этим странам (рис. 2). Несмотря на схожие пищевые

Рис. 2. Потребление рыбы на душу населения в Северо-Восточной Азии. Источник: Статистика ФАО. Примечание: без учёта водных млекопитающих и водорослей.

Fig. 2. Fish consumption per capita in Northeast Asia Source: FAO Statistics. Note: excluding aquatic mammals and algae

привычки в Китае, Японии и Южной Корее, различия в уровне потребления рыбной продукции на душу населения обусловлены структурой потребления животного белка в Китае, которую можно охарактеризовать как «один высокий и два низких»: высокий уровень потребления мяса и низкий – рыбной продукции и молочных продуктов. В Южной Корее доля белка из рыбной продукции в 1983 году составляла 63%, а частота потребления блюд из морепродуктов остаётся стабильно высокой; в 2017 году Южная Корея занимала первое место в мире по среднедушевому потреблению рыбной продукции. В Японии среднедушевое потребление рыбной продукции в 2011 году оказалось ниже потребления мяса. Однако, несмотря на общий нисходящий тренд, Япония остаётся крупным потребителем рыбной продукции.

Реальный объём потребления рыбной продукции в стране определяется как общий объём внутреннего предложения за вычетом непищевого потребления. При этом общий объём внутреннего предложения рассчитывается как суммарный объём производства рыбной продукции за вычетом объёмов продаж продукции глубоководного рыболовства за рубежом и чистого экспорта. Согласно расчётам Центра исследований стратегии развития рыболовства Китайской академии рыбохозяйственных наук, основанным на этой методологии и соответствующих параметрах, в период с 2013 по 2022 годы объём пищевого потребления животной рыбной продукции (в свежем весе) в Китае увеличился с 32,7 млн тонн до 48,37 млн тонн, демон-

стрируя среднегодовой темп роста 4,45%. Потребление водорослевой продукции увеличилось с 6,05 млн тонн до 7,74 млн тонн, со среднегодовым темпом роста 3,18%. Среднедушевое потребление животной рыбной продукции выросло с 23,92 кг до 34,26 кг, а среднедушевое потребление водорослевой продукции (в свежем весе) увеличилось с 4,42 кг до 5,4 кг.

2. Модернизация структуры потребления рыбной продукции

В условиях роста потребления рыбной продукции и изменения потребностей в улучшении структуры питания, рынок рыбной продукции в Китае адаптируется к этим изменениям. Увеличивается потребление высококачественной отечественной аквакультурной продукции, включая такие виды, как каменный окунь (групер) Epinephelus, косатка-скрипун Pelteobagrus fulvidraco, форель Oncorhynchus mykiss, жёлтый горбыль Larimichthys crocea, угорь Anguilla japonica, трепант Apostichopus sp., голубой краб Scylla serrata и китайский окунь Siniperca chuatsi. Согласно прогнозам FAO, к 2030 году мировой объём производства аквакультурной рыбной продукции достигнет 202 млн тонн, при этом Китай будет играть ключевую роль в этом процессе.

Кроме того, рыбная продукция с высокой экономической ценностью, такая как тунец и лосось, становится новым драйвером роста рыболовной отрасли Китая. Видимое потребление тунца на китайском рынке демонстрирует устойчивую восходящую тенденцию (рис. 3), достигнув пика в 42,3 тыс. тонн в 2019 году,

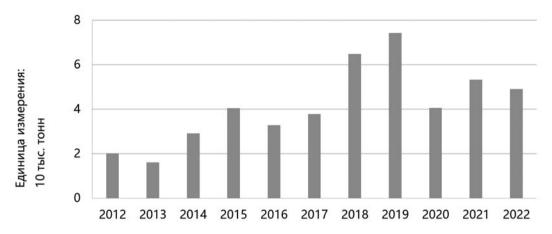


Рис. 3. Видимое потребление тунца на рынке Китая.

Примечание: Данные по общему объёму производства взяты из «Статистического ежегодника рыболовства Китая». Данные по торговле получены из базы данных FishStatl Продовольственной и сельскохозяйственной организации ООН (FAO). Статистика включает следующие виды: живой, свежий или охлаждённый, замороженный длиннопёрый тунец, большеглазый тунец, тихоокеанский голубой тунец, атлантический голубой тунец, южный синий тунец, желтопёрый тунец и скипджек (полосатый тунец)

Fig. 3. Apparent tuna consumption in the Chinese market.

Note: The total production data is taken from the China Fisheries Statistical Yearbook. Trade data is obtained from the FishStatJ database of the Food and Agriculture Organization of the United Nations (FAO). The statistics include the following species: live, fresh or chilled, frozen longhorn tuna, bigeye tuna, Pacific bluefin tuna, Atlantic bluefin tuna, southern bluefin tuna, yellowfin tuna and skipjack (striped tuna)

Рис. 4. Объем импорта лосося в Китае.

Источник: Главное таможенное управление Китая

Fig. 4. The volume of salmon imports in China. Source: China General Administration of Customs

хотя в 2020 году наблюдалось снижение из-за воздействия пандемии COVID-19. В отношении потребления лосося отмечается значительный рост продаж импортируемого атлантического лосося. В 2022 году лосось был включен в национальные рекомендации по питанию как один из ключевых источников высококачественного белка и вошел в меню морепродуктов для зимних Олимпийских игр (рис. 4).

3. Диверсификация каналов сбыта и потребления

Начиная со второго десятилетия XXI века активно развиваются технологии «интернет+», холодовая цепь логистики и услуги доставки, что привело к ежегодному росту объёмов продаж рыбной продукции. Во время пандемии COVID-19 объёмы продаж свежих продуктов на платформах электронной коммерции, таких как JD.com, Hema, Meituan и Dingdong Maicai, выросли более чем в три раза, что значительно увеличило масштабы реализации рыбной продукции. Новые платформы электронной торговли свежими продуктами обеспечивают высококачественный сервис, расширяют возможности потребителей для онлайн-покупок рыбной продукции и эффективно удовлетворяют их разнообразные потребности. В 2023 году развитие индустрии готовых блюд было включено в документ № 1 ЦК КПК, а блюдо из рыбы с пикулями (приготовленная на пару рыба с маринованной китайской капустой) стало лидером продаж среди готовых блюд в прямых трансляциях на платформе Taobao в 2022 году, показав годовой прирост продаж на 16,80%1.

II. ПРОГНОЗИРОВАНИЕ ТЕНДЕНЦИЙ ПОТРЕБЛЕНИЯ РЫБНОЙ ПРОДУКЦИИ ЖИТЕЛЯМИ КИТАЯ

Для обеспечения безопасного предложения рыбной продукции и дальнейшего анализа будущих тенденций потребления крайне важно изучить особенности потребления рыбной продукции в Китае. На основе данных за 2011-2022 годы авторы построили модели GM(1,1) и GM(1, N) для прогнозирования объёма потребления рыбной продукции жителями Китая на следующем этапе.

1. Принципы моделирования

Модели серого прогнозирования позволяют выявлять закономерности в данных путём обработки исходной информации, что обеспечивает возможность научного предсказания будущих тенденций. Модель серого прогнозирования GM(1,1) эффективна в условиях ограниченного объёма данных и небольшого количества наблюдений. Благодаря своей простоте и использованию единственного фактора эта модель широко применяется. Однако модель GM(1,1) учитывает только саму независимую переменную и не принимает во внимание влияние других факторов на результаты прогнозирования. Поскольку потребление рыбной продукции населением зависит от множества факторов, для повышения точности прогноза и уменьшения погрешности был проведен серый реляционный анализ для выбора факторов, влияющих на потребление рыбной продукции, и на основе модели GM(1,1) разработана модель серого прогнозирования GM(1, N), где N - количество связанных факторов.

Принципы работы модели GM(1, N) заключаются в следующем:

¹ Аймэй Консалтинг. Отчёт о потребителях готовых блюд «кисло-острая рыба» в Китае, 2022 [EB/OL]. (2022-09-21) [2023-01-19]. 艾媒咨询.《2022年中国酸菜鱼预制菜消费者洞察报告》[EB/OL].(2022-09-21) [2023-01-19]. https://www.iimedia.cn/c400/88525.html.

Пусть $X_1^{(0)} = \{x_1^{(0)}(1), x_1^{(0)}(2), \dots, x_1^{(0)}(n)\}$ – исходная последовательность данных о среднедушевом потреблении рыбной продукции, а

$$X_{2}^{(0)} = \{x_{2}^{(0)}(1), x_{2}^{(0)}(2), \dots, x_{2}^{(0)}(n)\};$$

$$X_{3}^{(0)} = \{x_{3}^{(0)}(1), x_{3}^{(0)}(2), \dots, x_{3}^{(0)}(n)\};$$

$$\dots \dots$$

$$X_{N}^{(0)} = \{x_{N}^{(0)}(1), x_{N}^{(0)}(2), \dots, x_{N}^{(0)}(n)\}.$$

- последовательности данных, соответствующие связанным факторам.

При этом $X_i^{(1)}$ – последовательность первого порядка накопления для $X_i^{(0)}$ i = 1, 2, ..., N, определяемая как:

$$x_i^{(1)}(k) = \sum_{k=1}^n x_i^{(0)}(k), \quad i=1,2,...,N,$$
 (1)

где: $Z_i^{(1)}$ – последовательность, сформированная как среднее значение соседних элементов $X_1^{(1)}$, модель GM(1, N) описывается уравнением:

$$Z_1^{(1)}(k) = \frac{1}{2} [x_1^{(1)}(k) + x_1^{(1)}(k-1)], \quad k = 2,3,\dots,n; \quad \text{(2)}$$

$$x_1^{(0)}(k) + a z_1^{(1)}(k) = \sum_{i=2}^N b_i x_i^{(1)}(k), \qquad \qquad \text{(3)}$$
 где: a – коэффициент развития; b_i – коэффициенты

драйверов; $b_i x_i^{(1)}(k)$ – члены драйверов.

2. Серый реляционный анализ

Серый реляционный анализ используется для оценки степени взаимосвязи между независимыми и зависимыми переменными, что позволяет определить ключевые факторы, влияющие на потребление рыбной продукции. Потребление рыбной продукции населением зависит от множества факторов. С учётом точности и доступности данных, а также ссылаясь на

исследования Чэнь Ци [2016], Гао Цзиньтяня с соавторами [2013] и других учёных, на основе статистических данных за 2011-2022 годы из «Китайского статистического ежегодника» и «Статистического ежегодника рыболовства Китая» были выбраны следующие факторы, влияющие на потребление рыбной продукции населением (Ү): общий объём производства рыбной продукции (Х1), численность населения (X_2) , уровень урбанизации (X_3) и располагаемый доход населения (Х₄). Цена рыбной продукции является важным фактором, влияющим на объём потребления, однако она подвержена значительным колебаниям под воздействием множества факторов, поэтому вместо цены были использованы другие показатели. Поскольку значения выбранных факторов, влияющих на потребление рыбной продукции, существенно различаются, прямой расчёт на основе исходных данных затруднён. Для этого требуется нормализация данных. В данном исследовании используются временные ряды, демонстрирующие восходящий тренд, поэтому для приведения данных к стандартному виду применён метод начальной нормализации, результаты которого представлены в таблице нормализованных данных (табл. 1).

На основе анализа нормализованных данных были получены последовательности разностей (табл. 2), а также максимальная и минимальная разности. Последовательность разностей определяется как: $\Delta_{0i}(k) = |x'_0(k) - x'_i(k)|, k = 1, 2, ..., n$, максимальное расхождение составляет: $M = Max_i Max_k \Delta_i(k) = 1.5277$, минимальная разность: $m = Min_i Min_i \Delta_i(k) = 0$.

С использованием формулы коэффициента корреляции: $\rho(x_0(k), x_i(k)) = (m + \rho M) / D_{0i}(k) + \rho M$, где: ρ – коэффициент разрешения, $\rho \in (0,1)$, обычно принимае-

Таблица 1. Таблица нормализованных данных

Table 1. Table of normalized data

Год	Υ	X ₁	X ₂	X ₃	X ₄
2011	1.0000	1.0000	1.0000	1.0000	1.0000
2012	1.0861	0.9820	1.0074	1.0245	1.1431
2013	1.0425	1.0252	1.0134	1.0513	1.2753
2014	1.0899	1.0712	1.0202	1.0756	1.4140
2015	1.1358	1.1085	1.0253	1.1061	1.5477
2016	1.1637	1.1385	1.0320	1.1352	1.6894
2017	1.1804	1.1503	1.0377	1.1622	1.8524
2018	1.1746	1.1525	1.0417	1.1866	2.0208
2019	1.4059	1.1565	1.0451	1.2099	2.2075
2020	1.4390	1.1688	1.0467	1.2327	2.3154
2021	1.4706	1.1940	1.0470	1.2487	2.5276
2022	1.4387	1.2255	1.0464	1.2583	2.6523

Таблица 2. Значения последовательности разностей **Table 2.** Values of the sequence of differences

Год	X ₁	X ₂	X ₃	X ₄
2011	0.0000	0.0000	0.0000	0.0000
2012	0.0180	0.0075	0.0245	0.1431
2013	0.0252	0.0134	0.0513	0.2753
2014	0.0712	0.0202	0.0756	0.4140
2015	0.1085	0.0253	0.1061	0.5477
2016	0.1385	0.0320	0.1352	0.6894
2017	0.1503	0.0378	0.1623	0.8524
2018	0.1525	0.0417	0.1866	1.0208
2019	0.1565	0.0452	0.2099	1.2075
2020	0.1688	0.0467	0.2327	1.3154
2021	0.1940	0.0470	0.2487	1.5276
2022	0.2254	0.0464	0.2583	1.6523

мый равным ρ=0,5, были рассчитаны серые реляционные коэффициенты (табл. 3).

На основе серых реляционных коэффициентов и формулы степени корреляции: $\rho(x_0(k), x_i(k)) = (m+\rho M)/D_{0i}(k)+\rho M$, i=0,1,2,..., m, были рассчитаны степени корреляции между потреблением рыбной продукции населением и каждым из факторов. Результаты показали следующие значения: X1(t)=0.8725, X2(t)=0.9623, X3(t)=0.8520, X4(t)=0.5532. Общий объём производства рыбной продукции, численность населения и уровень урбанизации демонстрируют высокую степень корреляции с потреблением рыбной продукции населением, что делает их основными факторами, влияющими на потребление. На основании этого в качестве входных показателей модели GM(1, N) были выбраны общий объём производства

рыбной продукции (X1), численность населения (X2) и уровень урбанизации (X3), а потребление рыбной продукции населением (Y) – в качестве выходного показателя, чтобы обеспечить получение точных прогнозных результатов.

3. Проверка точности моделей

Для подтверждения применимости моделей серого прогнозирования была проведена проверка их точности. Результаты проверки точности модели GM(1,1) показали следующие значения: (Q = 0.03), (C = 0.31), (P = 1). Для модели GM(1, N) результаты проверки точности составили: (Q = 0.06), (C = 0.40), (P = 0.92). Сравнение с таблицей уровней точности моделей серого прогнозирования (табл. 4) показывает, что модели GM(1,1) и GM(1,N) обладают высоким уровнем точ-

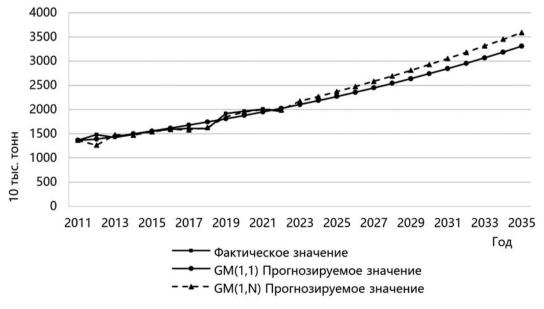
Таблица 3. Серые реляционные коэффициенты **Table 3.** Gray correlation coefficients

Год	X ₁	X ₂	X ₃	X ₄
2011	1.0000	1.0000	1.0000	1.0000
2012	0.9769	0.9903	0.9689	0.8422
2013	0.9681	0.9827	0.9370	0.7351
2014	0.9148	0.9742	0.9099	0.6485
2015	0.8757	0.9680	0.8780	0.5824
2016	0.8465	0.9598	0.8496	0.5256
2017	0.8356	0.9529	0.8248	0.4726
2018	0.8336	0.9482	0.8037	0.4280
2019	0.8299	0.9442	0.7844	0.3875
2020	0.8190	0.9424	0.7665	0.3674
2021	0.7974	0.9420	0.7544	0.3333
2022	0.7722	0.9427	0.7473	0.3161

ИССЛЕДОВАНИЕ ТЕНДЕНЦИЙ ИЗМЕНЕНИЯ ОБЪЁМОВ ПОТРЕБЛЕНИЯ РЫБНОЙ ПРОДУКЦИИ В КИТАЕ С ТОЧКИ ЗРЕНИЯ ПОВЫШЕНИЯ УРОВНЯ ПОТРЕБЛЕНИЯ

Уровни точности	С	Р
1-й уровень (лучший)	≤0.35	≥0.95
2-й уровень (хороший)	0.35 <c≤0.45< td=""><td>0.80≤P<0.95</td></c≤0.45<>	0.80≤P<0.95
3-й уровень (удовлетворительно)	0.45 <c≤0.65< td=""><td>0.70≤P<0.80</td></c≤0.65<>	0.70≤P<0.80
4-й уровень (неудовлетворительно)	>0.65	<0.70

Таблица 4. Уровни точности моделей серого прогнозирования **Table 4.** Accuracy levels of gray prediction models


ности прогнозирования. При этом меньшие значения относительной остаточной ошибки (Q) и отношения дисперсий (C) указывают на более высокий уровень точности, тогда как более высокое значение вероятности малой ошибки (P) свидетельствует о более высоком уровне точности модели[Цай, 2019].

4. Прогнозный анализ

Для дальнейшей проверки точности и применимости моделей необходимо рассчитать ошибку между фактическими и прогнозируемыми значениями общего потребления рыбной продукции населением (рис. 5). Сравнение с фактическими значениями показало, что средняя относительная ошибка моделей GM(1,1) и GM(1, N) составляет 3,19% и 2,53% соответственно (табл. 5). Для модели GM(1, N) относительная ошибка в первые два года была относительно высокой, тогда как в остальные годы ошибка была незначительной, при этом средняя относительная ошибка за последние 8 лет составила всего 1,54%. Особенности модели GM(1, N) обусловливают более высокую

ошибку в первые два года по сравнению с другими годами [Шу, 2018].

С использованием модели GM(1,1) были рассчитаны прогнозные значения для X1, X2 и X3. Эти прогнозные значения были добавлены к исходным данным, сформировав новую последовательность данных, на основе которой модель GM(1, N) использовалась для прогнозирования потребления рыбной продукции населением. С помощью моделей серого прогнозирования GM(1,1) и GM(1, N) был выполнен прогноз потребления рыбной продукции населением на период 2023-2035 годов, результаты которого представлены в табл. 6. Модель GM(1, N), применяемая для прогнозирования с использованием нескольких переменных (N переменных), обеспечивает более высокую точность по сравнению с моделью GM(1,1), которая учитывает только одну зависимую и одну независимую переменную, особенно в краткосрочных прогнозах. Поэтому в данном исследовании для прогнозирования общего потребления рыбной продукции населением были использованы данные модели GM(1, N).

Рис. 5. Прогнозируемые значения общего потребления рыбной продукции населением **Fig. 5.** Projected values of total consumption of fish products by the population

Таблица 5. Фактические и прогнозируемые значения для различных моделей **Table 5.** Actual and predicted values for various models

Год	Фактическое значение	GM (1,1) прогнозируемое значение	Относительная погрешность, %	GM (1,N) прогнозируемое значение	Относительная погрешность, %
2011	1364.00	1364.00	0.00	1364.00	0.00
2012	1481.55	1388.80	-6.26	1260.34	-14.93
2013	1421.95	1442.30	1.43	1474.55	3.70
2014	1486.58	1497.70	0.75	1470.73	-1.07
2015	1549.25	1555.30	0.39	1539.37	-0.64
2016	1587.24	1615.10	1.76	1590.74	0.22
2017	1610.12	1677.30	4.17	1578.99	-1.93
2018	1602.17	1741.80	8.72	1625.76	1.47
2019	1917.71	1808.70	-5.68	1847.10	-3.68
2020	1962.85	1878.30	-4.31	1951.44	-0.58
2021	2005.89	1950.50	-2.76	1997.49	-0.42
2022	1962.33	2025.60	3.22	1995.25	1.68

Примечание: Фактические значения представляют собой потребление рыбной продукции населением, рассчитанное на основе данных «Китайского статистического ежегодника» за 2012-2023 годы.

Таблица 6. Прогнозные значения потребления рыбной продукции населением (в 10 тыс. тонн) **Table 6.** Projected values of consumption of fish products by the population (in 10 thousand tons)

Год	GM (1,1) прогнозируемое значение	GM (1,N) прогнозируемое значение
2023	2103.50	2171.50
2024	2184.40	2267.61
2025	2268.40	2368.81
2026	2355.60	2471.93
2027	2446.20	2580.24
2028	2540.30	2691.85
2029	2638.00	2807.39
2030	2739.40	2927.47
2031	2844.80	3051.06
2032	2954.20	3180.00
2033	3067.80	3312.12
2034	3185.80	3448.69
2035	3308.30	3591.31

Результаты прогноза показывают, что в периоды «четырнадцатой пятилетки» (2021-2025), «пятнадцатой пятилетки» (2026-2030) и в более долгосрочной перспективе общее потребление рыбной продукции населением Китая продолжит расти. К 2035 году объём потребления рыбной продукции, по прогнозам, достигнет 35,91 млн тонн (без учёта водорослевой продукции), что при расчёте с учётом доли съедобной части 54,50% эквивалентно 65,89 млн тонн в свежем весе.

5. Обсуждение

В данной статье для прогнозирования потребления рыбной продукции населением использовалась модель серого прогнозирования GM(1, N). Результаты прогноза показывают, что к 2030 году объем потребления рыбной продукции населением Китая (без учёта водорослевой продукции) составит, по оценкам, 29,27 млн тонн, а к 2035 году увеличится до 35,91 млн тонн. Эти данные могут служить основой для заблаго-

временного планирования обеспечения эффективного предложения рыбной продукции в Китае. Поскольку в модели не учитывались возможные изменения экономической политики и влияние непредвиденных событий в будущем, а в предыдущих исследованиях некоторые учёные включали цену рыбной продукции и индекс цен в число факторов, влияющих на потребление, что предоставило дополнительные ориентиры для прогнозирования, в дальнейших исследованиях рекомендуется включать большее количество значимых факторов для повышения точности прогноза модели и уменьшения погрешности.

III. РЕКОМЕНДАЦИИ ПО УСТОЙЧИВОМУ РАЗВИТИЮ ПОТРЕБЛЕНИЯ РЫБНОЙ ПРОДУКЦИИ В КИТАЕ

1. Использование крупных водоёмов для обеспечения продовольствия и расширение каналов поставок рыбной продукции

На глобальном уровне потребление рыбной продукции демонстрирует тенденцию к росту, а каналы электронной коммерции и такие формы продукции, как готовые блюда, играют определённую роль в стимулировании модернизации потребления рыбной продукции в Китае, что свидетельствует о позитивной динамике развития. В процессе модернизации потребления рыбной продукции в Китае необходимо максимально использовать имеющиеся ресурсы рыболовства в реках, озёрах, морях и водохранилищах, чтобы они служили основой стабильного предложения и способствовали увеличению эффективного предложения продукции аквакультуры. В настоящее время использование крупных водоёмов в Китае сталкивается с негативным восприятием, связанным с односторонним акцентом на отдельные случаи перегрузки ресурсной и экологической среды, а также недостаточным пониманием того, что рыбная продукция является важной частью концепции комплексного продовольственного обеспечения. Это может стать одним из факторов, подрывающих стабильность производства и поставок рыбной продукции. Кроме того, в последние годы площадь аквакультуры в Китае ежегодно сокращается. Для решения этой проблемы органы управления рыбным хозяйством, научноисследовательские институты, ассоциации и другие участники рыбной отрасли укрепили взаимодействие и сотрудничество, проделав значительную работу по технической поддержке для восстановления доверия к отрасли. Предлагается дальнейшее совершенствование политики, направленной на стимулирование потребления рыбной продукции в новую эпоху, с учётом сбалансированного подхода к производственным и экологическим аспектам рыболовства, а также к вопросам развития и безопасности. Необходимо чётко обозначить политические сигналы и конкретные меры, позволяющие в условиях защиты окружающей среды полноценно использовать ресурсы рек, озёр и морей для развития рыболовства. В целях повышения эффективности предложения продукции аквакультуры рекомендуется разработать на национальном уровне план использования водоёмов и прибрежных зон для аквакультуры, а также законодательно закрепить защиту пространства для развития рыбной отрасли.

2. Активное развитие разведения водных видов с высокой экономической ценностью для укрепления потенциала предложения

В Китае стремительно растёт спрос на рыбную продукцию с высокой экономической ценностью, что объективно отражает высокий спрос на качественные продукты питания, соответствующие стремлению к лучшей жизни. В некоторых регионах наблюдается нехватка внутреннего предложения высококачественной рыбной продукции, тогда как предложение массовых видов продукции практически достигло насыщения. При этом сохраняется дефицит премиальной продукции, что подчёркивает необходимость сосредоточить усилия на повышении качества. Для упорядоченного перехода к предложению рыбной продукции с высокой экономической ценностью следует разработать соответствующие политики, институциональные механизмы и стандарты. Увеличение предложения высококачественной рыбной продукции не только способствует росту потребления, но и оказывает положительное влияние на повышение общей эффективности рыбной отрасли. Начиная с периода «тринадцатой пятилетки» (2016-2020), в рамках национальной системы технологий для современной аквакультуры морских рыб были достигнуты значительные успехи в разработке технологий устойчивого разведения. Китайская академия рыбохозяйственных наук накопила определённый опыт в экспериментальном разведении желтопёрого тунца, теоретических исследованиях разведения южного синего тунца и инновациях в области генетического материала.

3. Реализация стратегической ценности рыбной продукции и усиление пропаганды культуры потребления

В соответствии с целями «Руководства по питанию для населения Китая» предлагается установить целевые показатели потребления рыбной продукции, чтобы повысить её стратегическую роль в продоволь-

ственной системе. Необходимо провести количественный анализ соотношения спроса и предложения рыбной продукции на период «четырнадцатой пятилетки» (2021-2025) и в более долгосрочной перспективе, скорректировать структуру потребления рыбной продукции по сравнению с мясом птицы и скота, а также оптимизировать направления потребления рыбной продукции. Это позволит правительству заранее оценить эффективность макроэкономической политики и подготовить соответствующие меры. Рекомендуется активно использовать различные каналы пропаганды, включая популяризацию знаний о рыбной продукции и проведение образовательных программ по питанию для населения, чтобы укрепить культурные традиции и усилить защиту и пропаганду рыболовной культуры, включая культуру потребления рыбной продукции, для содействия процветанию отрасли. Кроме того, на основе регулярных исследований динамики потребления следует проводить целенаправленный анализ эффективности политики рыбной отрасли с позиций производства и потребления, чтобы обеспечить точечное продвижение высококачественного развития рыболовства.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических норм

Все применимые этические нормы соблюдены.

Финансирование

Работа выполнена в порядке личной инициативы.

ЛИТЕРАТУРА

- Гао Ц., Ли Ц., Лю Т. 2013. Тенденции спроса на водные продукты у населения Китая и анализ факторов, на него влияющих // сборник Дунъюэ. Т. 34(1):118-123. (Кит.: 高金田, 李京梅, 刘铁鹰. 中国水产品居民消费需求趋势及影响因素分析[J].东岳论丛,2013, 34(1):118-123.).
- Ли Ж. 2018. Исследование направлений развития водной отрасли в условиях структурной реформы со стороны предложения // Рынок Китая. Т. 9:71-72. (Кит.: 李瑞琦. 供给侧结构性改革背景下水产业发展方向研究[J].中国市场,2018(9):71-72.).
- Ли С., Гао С., Чжао Л., Лю Ц., Сюй Л. 2024. Оценка и анализ потребления водных продуктов населением Китая // Экономика рыбного хозяйства Китая. Т. 2:95-104. (Кит.: 李雪,高翔,赵蕾,刘聪等.中国居民水产品食用消费量测算与分析[J].中国渔业经济,2024, (2):95-104.).
- ЛУ Ч. 2022. Комплексное обеспечение стабильного производства и поставок рыбы в Тайчжоу с позиции «большого продовольственного подхода» // Рыбное хозяйство Китая. Т. 8:59-62. (Кит.: 卢昌彩. 用大食物观统筹台州渔业稳产保供[J].中国水产,2022(8):59-62.).

- Ма Ц., Цзоу Ч., Пань И., Ли И. 2018. Исследование новых моделей потребления водных продуктов на примере Hema Fresh // Торговые исследования Китая. Т. 11:75-76. (Кит.: 马君亦, 邹舟, 潘怡洁 等. 水产品消费新模式研究:以盒马鲜生为例[J].中国商论,2018(11):75-76.).
- Статистический ежегодник рыбного хозяйства Китая. 2023. Бюро рыболовства и рыболовного надзора Министерства сельского хозяйства и сельских дел КНР, Национальная станция по продвижению технологий в рыбном хозяйстве, Китайское общество рыбного хозяйства. Пекин: Китайское с./х. изд-во. С. 180 (Кит.: 农业农村部渔业渔政管理局,全国水产技术推广总站,中国水产学会.2022中国渔业统计年鉴[M]. 北京:中国农业出版社,2022.).
- Сунь Ц., Лу Л. 2007. Анализ факторов, влияющих на рынок потребления водных продуктов Китая // Журнал Даляньского морского университета (сер. общественных наук). Т. 6:98-100. (Кит.: 孙建富, 鹿丽. 中国水产品消费市场影响 因素分析[J]. 大连海事大学学报(社会科学版),2007(6):98-100.).
- Сунь Ч. 2000. Анализ баланса спроса и предложения на рынке водных продуктов Китая // Исследования экономики рыбного хозяйства Китая. Т. 3:28-29. (Кит.: 孙琛. 我国水产品市场供需平衡分析[J].中国渔业经济研究,2000(3):28-29.).
- Тан Ч., Чжан С. 2005. Анализ факторов, влияющих на потребление водных продуктов городскими жителями Китая // Экономика рыбного хозяйства Китая. Т. 5:41-43. (Кит.: 谭城, 张小栓. 我国城镇居民水产品消费影响因素分析[J]. 中国渔业经济.2005(5):41-43.).
- Хань С., Чжоу Г., Ли И. 2015. Анализ особенностей потребления в сфере электронной коммерции свежих водных продуктов на примере Янцзы, Чжэцзяна и Шанхая // Торговые исследования Китая. Т. 24:65-67. (Кит.: 韩笑, 周桂娴, 李怡芳. 水产品生鲜电商的消费特点分析——以江浙沪为例[J].中国商论,2015(24):65-67.).
- Ху Ц., Ван Я. 2009. Анализ особенностей потребления водных продуктов в Китае и факторов, на него влияющих // Проблемы аграрной экономики. Т. 4:97-102. (Кит.: 胡求光, 王艳芬. 我国水产品的消费特征及其影响因素分析[J]. 农业经济问题,2009(4):97-102.).
- Цай С. 2019. Эмпирический анализ применения многофакторной серой прогностической модели первого порядка GM(1, N) // Журнал Харбинского педагогического университета (естественные науки). Т. 35(1):31-35. (Кит.: 蔡素丽. 一阶多变量灰色预测模型GM(1, N)应用实证分析[J].哈尔滨师范大学自然科学学,2019,35 (1):31-35).
- Чжао Ю., Лю Ц., У Ц., Цао Х., Оу Ц., Пань И. 2021. Питательная ценность и польза для здоровья водных продуктов в концепции «взаимодополняемости суши и воды» // Журнал рыбного хозяйства. Т. 45(7):1235-1247. (Кит. 赵勇,刘静,吴倩等."水陆互补"理念下的水产品营养健康功效 [J].水产学报,2021,45(7):1235-1247).
- Чжун Ж., Чэнь Ц., Лю Х., Ли Ж. 2020. Текущее состояние и меры развития отрасли электронной коммерции свежих водных продуктов в провинции Гуандун // Сельскохозяйственная наука Тяньцзиня. Т. 26(1):50-53. (Кит.: 钟锐宇, 陈金玉, 刘华等. 广东省水产品生鲜电商行业现状与对策分析[J].天津农业科学,2020,26(1):50-53.).
- Чэнь Ц., Хань Л. 2016. Анализ и прогноз факторов, влияющих на спрос домашних хозяйств на водные продукты // Ста-

- тистика и решения. Т. 17:97-100. (Кит.: 陈琦, 韩立民. 居民家庭水产品消费需求影响因素分析与预测[J].统计与决策,2016(17):97-100.).
- Шу Ф. 2018. Прогнозирование общего объёма личных сбережений жителей города Чунцин на основе модели GM(1, N) // Журнал Чунцинского колледжа Три ущелья. Т. 34(6):46-52. (Кит.: 舒服华. 基于GM(1, N)的重庆市居民个人储蓄总额预测[J].重庆三峡学院学报,2018,34(6):46-52.).
- Birch D., Lawley M. 2012. Buying seafood: Understanding barriers to purchase across consumption segments // Food Quality and Preference. V. 26 (1):12-21. DOI: 10.1016/j. foodqual.2012.03.004
- Boase N.J., White M.P., Gaze W.H., Redshaw C.H. 2019. Why don't the British eat locally harvested shellfish? The role of misconceptions and knowledge gaps // Appetite. V. 143:104352. DOI: 10.1016/j.appet.2019.104352.
- Carlucci D., Nocella G., De Devitiis B., Viscecchia R., Bimbo F., Nardone G. 2015. Consumer purchasing behaviour towards fish and seafood products. Patterns and insights from a sample of international studies // Appetite. V. 84:212-227. DOI: 10.1016/j.appet.2014.10.008.
- Hoerterer C., Petereit J., Krause G. 2022. Informed choice: The role of knowledge in the willingness to consume aquaculture products of different groups in Germany // Aquaculture. V. 556:738319.
- Jacobs S., Sioen I., Pieniak Z., De Henauw S., Maulvault A.L., Reuver M., Fait G., Cano-Sancho G., Verbeke W. 2015. Consumers health risk-benefit perception of seafood and attitude toward the marine environment: Insights from five European countries // Environmental Research. V. 143:11-19.
- Pieniak Z., Verbeke W., Olsen S.O. Hansen K.B., Brunsø K. 2010. Health-related attitudes as a basis for segmenting European fish consumers // Food Policy. V. 35(5):448-455. DOI: 10.1111/j.1365-277X.2010.01045.x.
- The state of world fisheries and aquaculture 2022: towards blue transformation. 2022. Rome, FAO. 440 p. doi. org/10.4060/cc0463en

REFERENCES

- Gao Ts., Li Ts., Liu T. 2013. Trends in demand for aquatic products among the Chinese population and analysis of factors affecting it // Dong Yue Collection. V. 34(1):118-123. (In Chinese).
- Lee J. 2018. A study of the development directions of the water industry in the context of supply-side structural reform // China Market. V. 9:71-72. (In Chinese).
- Li S., Gao S., Zhao L., Liu C., Xu L. 2024. Assessment and analysis of the consumption of aquatic products by the Chinese population // The economics of China's fisheries. V. 2:95-104. (In Chinese).
- Lu H. 2022. Comprehensive provision of stable fish production and supply in Taizhou from the perspective of the «big food approach» // Fisheries of China. V. 8:59-62. (In Chinese).

- Ma Ts., Zou Ch., Pan I., Li I. 2018. Research of new patterns of consumption of aquatic products using the example of Hema Fresh // Trade Studies of China. V. 11:75-76. (In Chinese).
- Statistical Yearbook of China's Fisheries. 2023. Bureau of Fisheries and Fisheries Supervision of the Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Fisheries Technology Promotion Station, Chinese Fisheries Society. Beijing: Chinese Agricultural Publishing House. 180 p. (In Chinese).
- Sun C., Lu L. 2007. Analysis of factors influencing the Chinese water products consumption market // Journal of Dalian Maritime University (ser. of Social Sciences). V. 6:98-100. (In Chinese).
- Sun H. 2000. Analysis of the balance of supply and demand in the Chinese water products market // Studies of the Chinese Fisheries Economy. V. 3:28-29. (In Chinese).
- Tang Ch., Zhang S. 2005. Analysis of the factors influencing the consumption of aquatic products by urban residents of China // The economics of China's fisheries. V. 5:41-43. (In Chinese).
- Han S., Zhou G., Li I. 2015. Analysis of the peculiarities of consumption in the field of e-commerce of fresh aquatic products using the example of Yangtze, Zhejiang and Shanghai // China's Trade research. V. 24:65-67. (In Chinese).
- Hu Ts., Wang Ya. 2009. Analysis of the peculiarities of consumption of aquatic products in China and the factors influencing it // Problems of the agrarian economy. V. 4:97-102. (In Chinese).
- Tsai S. 2019. Empirical analysis of the application of a multifactorial gray predictive model of the first order GM(1, N) // Journal of Harbin Pedagogical University (Natural Sciences). V. 35(1):31-35. (In Chinese).
- Zhao Yu., Liu C., Wu C., Cao H., Ou C., Pan I. 2021. Nutritional value and health benefits of aquatic products in the concept of «complementarity of land and water» // Journal of Fisheries. V. 45(7):1235-1247. (In Chinese).
- Zhong J., Chen C., Liu H., Li J. 2020. The current state and development measures of the e-commerce industry of fresh aquatic products in Guangdong Province // Agricultural Science of Tianjin. V. 26(1):50-53. (In Chinese).
- Chen C., Han L. 2016. Analysis and forecast of factors influencing household demand for water products // Statistics and solutions. V. 17:97-100. (In Chinese).
- Shu F. 2018. Forecasting the total amount of personal savings of residents of Chongqing based on the GM(1, N) model // Journal of Chongqing College Three Gorges. V. 34(6):46-52. (In Chinese).

Поступила в редакцию 21.05.2025 г. Принята после рецензий 12.08.2025 г.